This toolbox implements a Bayesian parametric proportional hazards regression model for right-censored survival data (see also Royston and Parmar 2002). The underlying baseline hazard function is modelled via integrated splines to guarantee monotonicity. The Bayesian fused lasso prior distribution is used to control smoothness of the baseline hazard function estimate and to select important covariates. To obtain samples from the posterior distribution, we use Hamiltonian Monte Carlo in conjunction with the Proximal MCMC algorithm (Zhou et al. 2024). Usage examples are included (see example?.m).
Citation pour cette source
Statovic (2025). Bayesian parametric survival analysis with the fused lasso (https://www.mathworks.com/matlabcentral/fileexchange/168941-bayesian-parametric-survival-analysis-with-the-fused-lasso), MATLAB Central File Exchange.
Extrait(e) le .
Zhou, Xinkai, et al. “Proximal MCMC for Bayesian Inference of Constrained and Regularized Estimation.” The American Statistician, Informa UK Limited, Feb. 2024, pp. 1–12, doi:10.1080/00031305.2024.2308821.
Zhou, Xinkai, et al. “Proximal MCMC for Bayesian Inference of Constrained and Regularized Estimation.” The American Statistician, Informa UK Limited, Feb. 2024, pp. 1–12, doi:10.1080/00031305.2024.2308821.
APA
Zhou, X., Heng, Q., Chi, E. C., & Zhou, H. (2024). Proximal MCMC for Bayesian Inference of Constrained and Regularized Estimation. The American Statistician, 1–12. Informa UK Limited. Retrieved from http://dx.doi.org/10.1080/00031305.2024.2308821
BibTeX
@article{Zhou_2024, title={Proximal MCMC for Bayesian Inference of Constrained and Regularized Estimation}, ISSN={1537-2731}, url={http://dx.doi.org/10.1080/00031305.2024.2308821}, DOI={10.1080/00031305.2024.2308821}, journal={The American Statistician}, publisher={Informa UK Limited}, author={Zhou, Xinkai and Heng, Qiang and Chi, Eric C. and Zhou, Hua}, year={2024}, month=feb, pages={1–12} }
Royston, Patrick, and Mahesh K. B. Parmar. “Flexible Parametric Proportional‐Hazards and Proportional‐Odds Models for Censored Survival Data, with Application to Prognostic Modelling and Estimation of Treatment Effects.” Statistics in Medicine, vol. 21, no. 15, Wiley, July 2002, pp. 2175–97, doi:10.1002/sim.1203.
Royston, Patrick, and Mahesh K. B. Parmar. “Flexible Parametric Proportional‐Hazards and Proportional‐Odds Models for Censored Survival Data, with Application to Prognostic Modelling and Estimation of Treatment Effects.” Statistics in Medicine, vol. 21, no. 15, Wiley, July 2002, pp. 2175–97, doi:10.1002/sim.1203.
APA
Royston, P., & Parmar, M. K. B. (2002). Flexible parametric proportional‐hazards and proportional‐odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in Medicine, 21(15), 2175–2197. Wiley. Retrieved from http://dx.doi.org/10.1002/sim.1203
BibTeX
@article{Royston_2002, title={Flexible parametric proportional‐hazards and proportional‐odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects}, volume={21}, ISSN={1097-0258}, url={http://dx.doi.org/10.1002/sim.1203}, DOI={10.1002/sim.1203}, number={15}, journal={Statistics in Medicine}, publisher={Wiley}, author={Royston, Patrick and Parmar, Mahesh K. B.}, year={2002}, month=jul, pages={2175–2197} }
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.