Bayesian parametric survival analysis with the fused lasso

Version 1.0.0 (2,65 Mo) par Statovic
Bayesian parametric survival analysis for proportional hazards regression.
17 téléchargements
Mise à jour 28 juin 2024

Afficher la licence

This toolbox implements a Bayesian parametric proportional hazards regression model for right-censored survival data (see also Royston and Parmar 2002). The underlying baseline hazard function is modelled via integrated splines to guarantee monotonicity. The Bayesian fused lasso prior distribution is used to control smoothness of the baseline hazard function estimate and to select important covariates. To obtain samples from the posterior distribution, we use Hamiltonian Monte Carlo in conjunction with the Proximal MCMC algorithm (Zhou et al. 2024). Usage examples are included (see example?.m).

Citation pour cette source

Statovic (2025). Bayesian parametric survival analysis with the fused lasso (https://www.mathworks.com/matlabcentral/fileexchange/168941-bayesian-parametric-survival-analysis-with-the-fused-lasso), MATLAB Central File Exchange. Extrait(e) le .

Zhou, Xinkai, et al. “Proximal MCMC for Bayesian Inference of Constrained and Regularized Estimation.” The American Statistician, Informa UK Limited, Feb. 2024, pp. 1–12, doi:10.1080/00031305.2024.2308821.

Afficher d’autres styles

Royston, Patrick, and Mahesh K. B. Parmar. “Flexible Parametric Proportional‐Hazards and Proportional‐Odds Models for Censored Survival Data, with Application to Prognostic Modelling and Estimation of Treatment Effects.” Statistics in Medicine, vol. 21, no. 15, Wiley, July 2002, pp. 2175–97, doi:10.1002/sim.1203.

Afficher d’autres styles
Compatibilité avec les versions de MATLAB
Créé avec R2024a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Tags Ajouter des tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0