simple forecast with AR model

Version 1.0.0.0 (1,65 ko) par raffaele
forecast with iterative or direct methods, a general AR(p) model, choosing the best p with AIC algo
906 téléchargements
Mise à jour 7 juil. 2015

Afficher la licence

This function performs a forecast, h-periods-ahead, supposing the process follows an AR process. The best number p of lags is detrmined by the AIC principle, with a simplified formula. Once the best number of lags is determined, the algorithm performs a forecast, choosing an iterative o direct method.
The iterative method performs a first forecast for the next period, then uses this forecast as the last observation of the time series, and perform again a forecast using this last informtion. Simple OLS is used to find parameters of the forecast.
The direct method performs an OLS regression of the variable into its h-th lags, thus it does not uses "new" information, but the variable is regressed directly from its past values.

Citation pour cette source

raffaele (2024). simple forecast with AR model (https://www.mathworks.com/matlabcentral/fileexchange/52010-simple-forecast-with-ar-model), MATLAB Central File Exchange. Extrait(e) le .

Compatibilité avec les versions de MATLAB
Créé avec R2014a
Compatible avec toutes les versions
Plateformes compatibles
Windows macOS Linux
Catégories
En savoir plus sur System Identification Toolbox dans Help Center et MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Publié le Notes de version
1.0.0.0