File Exchange

image thumbnail


version 1.0 (726 KB) by Laurent NEVOU
Schrodinger-Poisson solver with Dirichlet boundary condition


Updated 06 Dec 2020

From GitHub

View license on GitHub

Schrodinger-Poisson solver with Dirichlet boundary condition in 1D demonstrator

This program computes the Schrodinger-Poisson equations in heterostructures with the Dirichlet boundary conditions. This means that the doping level on the left and right side of the structure are the boundary conditions since they are setting the Fermi level. In order to be educatif and simple, few approximations are made:
-> The quantum structure is sandwiched between contacts with spacers. The Schrodinger solver is working ONLY in this domain.
-> The mass (=meff) is kept constant all over the structure. It means that meff should be set at the value of the well.
-> The non-parabolicity of the bands is also NOT considered in the Schrodinger solver and the density of states.
-> Schottky contact can be simulated by setting the doping of the contact at zero and by setting the bandgap energy of the contact material..
As an input, the program only needs a set of layer with thickness, conduction band offset and doping.

Enjoy! If you like it, don t forget the star!

Cite As

Laurent NEVOU (2021). Q_SchrodingerPoisson1D_Dirichlet_demo (, GitHub. Retrieved .

Comments and Ratings (0)

MATLAB Release Compatibility
Created with R2020b
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!