```% Boyd & Vandenberghe "Convex Optimization"
% Joëlle Skaf - 08/23/05
%
% The goal is to show the following problem formulations give all the same
% optimal residual norm ||Ax - b||:
% 1)        minimize    ||Ax - b||
% 2)        minimize    ||y||
%               s.t.    Ax - b = y
% 3)        maximize    b'v
%               s.t.    ||v||* <= 1  , A'v = 0
% 4)        minimize    1/2 ||y||^2
%               s.t.    Ax - b = y
% 5)        maximize    -1/2||v||*^2 + b'v
%               s.t.    A'v = 0
% where ||.||* denotes the dual norm of ||.||

% Input data
randn('state',0);
n = 4;
m = 2*n;
A = randn(m,n);
b = randn(m,1);
p = 2;
q = p/(p-1);

% Original problem
fprintf(1,'Computing the optimal solution of problem 1... ');

cvx_begin quiet
variable x(n)
minimize ( norm ( A*x - b , p) )
cvx_end

fprintf(1,'Done! \n');
opt1 = cvx_optval;

% Reformulation 1
fprintf(1,'Computing the optimal solution of problem 2... ');

cvx_begin quiet
variables x(n) y(m)
minimize ( norm ( y , p ) )
A*x - b == y;
cvx_end

fprintf(1,'Done! \n');
opt2 = cvx_optval;

% Dual of reformulation 1
fprintf(1,'Computing the optimal solution of problem 3... ');

cvx_begin quiet
variable nu(m)
maximize ( b'*nu )
norm( nu , q ) <= 1;
A'*nu == 0;
cvx_end

fprintf(1,'Done! \n');
opt3 = cvx_optval;

% Reformulation 2
fprintf(1,'Computing the optimal solution of problem 4... ');

cvx_begin quiet
variables x(n) y(m)
minimize ( 0.5 * square_pos ( norm ( y , p ) ) )
A*x - b == y;
cvx_end

fprintf(1,'Done! \n');
opt4 = (2*cvx_optval).^(.5);

% Dual of reformulation 2
fprintf(1,'Computing the optimal solution of problem 5... ');

cvx_begin quiet
variable nu(m)
maximize ( -0.5 * square_pos ( norm ( nu , q ) ) + b'*nu )
A'*nu == 0;
cvx_end

fprintf(1,'Done! \n');
opt5 = (2*cvx_optval).^(0.5);

% Displaying results
disp('------------------------------------------------------------------------');
disp('The optimal residual values for problems 1,2,3,4 and 5 are respectively:');
[ opt1 opt2 opt3 opt4 opt5 ]'
disp('They are equal as expected!');
```
```Computing the optimal solution of problem 1... Done!
Computing the optimal solution of problem 2... Done!
Computing the optimal solution of problem 3... Done!
Computing the optimal solution of problem 4... Done!
Computing the optimal solution of problem 5... Done!
------------------------------------------------------------------------
The optimal residual values for problems 1,2,3,4 and 5 are respectively:

ans =

1.8371
1.8371
1.8371
1.8371
1.8371

They are equal as expected!
```