```echo on

n = 10;
A = randn(2*n,n);
b = randn(2*n,1);
c = randn(n,1);
d = randn;
cvx_begin
variable x(n)
dual variables y z
minimize( c' * x + d )
subject to
y : A * x <= b;
cvx_end

echo off
```
```n = 10;
A = randn(2*n,n);
b = randn(2*n,1);
c = randn(n,1);
d = randn;
cvx_begin
variable x(n)
dual variables y z
minimize( c' * x + d )
subject to
y : A * x <= b;
cvx_end

Calling sedumi: 20 variables, 10 equality constraints
For improved efficiency, sedumi is solving the dual problem.
------------------------------------------------------------
SeDuMi 1.21 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.
Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta = 0.500
eqs m = 10, order n = 21, dim = 21, blocks = 1
nnz(A) = 200 + 0, nnz(ADA) = 100, nnz(L) = 55
it :     b*y       gap    delta  rate   t/tP*  t/tD*   feas cg cg  prec
0 :            4.71E+00 0.000
1 :   1.34E+01 1.22E+00 0.000 0.2587 0.9000 0.9000  -1.79  1  1  3.1E+01
2 :   6.72E+01 3.27E-01 0.000 0.2688 0.9000 0.9000  -0.78  1  1  2.0E+01
3 :   1.36E+03 1.14E-02 0.000 0.0347 0.9900 0.9900  -0.79  1  1  1.2E+01
4 :   2.96E+07 5.42E-07 0.077 0.0000 1.0000 1.0000  -1.00  1  1
Primal infeasible, dual improving direction found.
iter seconds  |Ax|    [Ay]_+     |x|       |y|
4      0.0   0.0e+00   0.0e+00   0.0e+00   7.0e-01

Detailed timing (sec)
Pre          IPM          Post
1.000E-02    1.000E-02    0.000E+00
Max-norms: ||b||=1.576658e+00, ||c|| = 2.453744e+00,
Cholesky |add|=0, |skip| = 0, ||L.L|| = 1.
------------------------------------------------------------
Status: Unbounded
Optimal value (cvx_optval): -Inf

echo off
```