La traduction de cette page n'est pas à jour. Cliquez ici pour voir la dernière version en anglais.
Systèmes d’IA embarqués
Exécutez et déployez des solutions de Deep Learning sur du hardware.
Fonctions
Couches de traitement du signal
cwtLayer | Continuous wavelet transform layer (depuis R2022b) |
modwtLayer | Maximal overlap discrete wavelet transform layer (depuis R2022b) |
stftLayer | Short-time Fourier transform layer (depuis R2021b) |
istftLayer | Inverse short-time Fourier transform layer (depuis R2024a) |
Extraction de caractéristiques
dlcwt | Deep learning continuous wavelet transform (depuis R2022b) |
dlmodwt | Deep learning maximal overlap discrete wavelet transform and multiresolution analysis (depuis R2022a) |
dlstft | Deep learning short-time Fourier transform (depuis R2021a) |
dlistft | Deep learning inverse short-time Fourier transform (depuis R2024a) |
cwtfilterbank | Continuous wavelet transform filter bank |
findchangepts | Find abrupt changes in signal |
findpeaks | Find local maxima |
modwt | Maximal overlap discrete wavelet transform |
risetime | Rise time of positive-going bilevel waveform transitions |
stft | Short-time Fourier transform |
signalFrequencyFeatureExtractor | Streamline signal frequency feature extraction (depuis R2021b) |
signalTimeFeatureExtractor | Streamline signal time feature extraction (depuis R2021a) |
waveletScattering | Wavelet time scattering |
Rubriques
- Deep Learning Code Generation on ARM for Fault Detection Using Wavelet Scattering and Recurrent Neural Networks (Wavelet Toolbox)
Perform acoustic-based fault detection on a Raspberry Pi® using wavelet scattering and recurrent neural networks. (depuis R2023a)
Exemples présentés
Modulation Classification Using Wavelet Analysis on NVIDIA Jetson
Use wavelets to classify waveforms on a NVIDIA Jetson®.
Deploy Signal Segmentation Deep Network on Raspberry Pi
Generate a MEX function and a standalone executable to perform waveform segmentation on a Raspberry Pi.
Classify ECG Signals Using DAG Network Deployed to FPGA
Classify human electrocardiogram (ECG) signals by deploying a trained directed acyclic graph (DAG) network.
Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning
Generate and deploy a CUDA® executable to classify electrocardiogram signals using wavelet-derived features.
Code Generation for a Deep Learning Simulink Model to Classify ECG Signals
Create and deploy a Simulink® model for signal classification using wavelet-based features.
Deploy Signal Classifier Using Wavelets and Deep Learning on Raspberry Pi
Classify human electrocardiogram signals on a Raspberry Pi using scalograms and a deep convolutional neural network.
Commande MATLAB
Vous avez cliqué sur un lien qui correspond à cette commande MATLAB :
Pour exécuter la commande, saisissez-la dans la fenêtre de commande de MATLAB. Les navigateurs web ne supportent pas les commandes MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)