Plotting the Efficient Frontier for a Portfolio Object
The plotFrontier
function creates a plot of
the efficient frontier for a given portfolio optimization problem. This function accepts
several types of inputs and generates a plot with an optional possibility to output the
estimates for portfolio risks and returns along the efficient frontier. plotFrontier
has four different ways that it can be used. In addition to
a plot of the efficient frontier, if you have an initial portfolio in the
InitPort
property, plotFrontier
also displays the return versus risk of the initial
portfolio on the same plot. If you have a well-posed portfolio optimization problem set
up in a Portfolio
object and you use plotFrontier
, you get a plot of the efficient frontier with the default
number of portfolios on the frontier (the default number is 10
and is
maintained in the hidden property defaultNumPorts
). This example
illustrates a typical use of plotFrontier
to create a new plot:
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ]; p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0); p = setAssetMoments(p, m, C); p = setDefaultConstraints(p); plotFrontier(p)
The Name
property appears as the title of the efficient frontier plot if
you set it in the Portfolio
object. Without an explicit name, the
title on the plot would be “Efficient Frontier.” If you want to obtain a
specific number of portfolios along the efficient frontier, use plotFrontier
with the number of portfolios that you want. Suppose that
you have the Portfolio
object from the previous example and you want
to plot 20 portfolios along the efficient frontier and to obtain 20 risk and return
values for each portfolio:
[prsk, pret] = plotFrontier(p, 20); display([pret, prsk])
ans = 0.0590 0.0769 0.0654 0.0784 0.0718 0.0825 0.0781 0.0890 0.0845 0.0973 0.0909 0.1071 0.0972 0.1179 0.1036 0.1296 0.1100 0.1418 0.1163 0.1545 0.1227 0.1676 0.1291 0.1810 0.1354 0.1955 0.1418 0.2128 0.1482 0.2323 0.1545 0.2535 0.1609 0.2760 0.1673 0.2995 0.1736 0.3239 0.1800 0.3500
Plotting Existing Efficient Portfolios
If you already have efficient portfolios from any of the "estimateFrontier" functions (see
Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object), pass them into plotFrontier
directly to plot the
efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ]; p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0); p = setAssetMoments(p, m, C); p = setDefaultConstraints(p); pwgt = estimateFrontier(p, 20); plotFrontier(p, pwgt)
Plotting Existing Efficient Portfolio Risks and Returns
If you already have efficient portfolio risks and returns, you can use the interface to
plotFrontier
to pass them into
plotFrontier
to obtain a plot of
the efficient frontier:
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ]; p = Portfolio('Name', 'Asset Allocation Portfolio', 'InitPort', pwgt0); p = setAssetMoments(p, m, C); p = setDefaultConstraints(p); [prsk, pret] = estimatePortMoments(p, p.estimateFrontier(20)); plotFrontier(p, prsk, pret)
See Also
Portfolio
| estimatePortReturn
| estimatePortMoments
| plotFrontier
Related Examples
- Estimate Efficient Frontiers for Portfolio Object
- Creating the Portfolio Object
- Working with Portfolio Constraints Using Defaults
- Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object
- Postprocessing Results to Set Up Tradable Portfolios
- Asset Allocation Case Study
- Portfolio Optimization Examples Using Financial Toolbox
- Portfolio Optimization with Semicontinuous and Cardinality Constraints
- Black-Litterman Portfolio Optimization Using Financial Toolbox
- Portfolio Optimization Using Factor Models
- Portfolio Optimization Using Social Performance Measure
- Diversify Portfolios Using Custom Objective