Main Content

capbylg2f

Price cap using Linear Gaussian two-factor model

Description

example

CapPrice = capbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,Maturity) returns cap price for a two-factor additive Gaussian interest-rate model.

Note

Alternatively, you can use the Cap object to price cap instruments. For more information, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.

example

CapPrice = capbylg2f(___,Name,Value) adds optional name-value pair arguments.

Note

Use the optional name-value pair argument, Notional, to pass a schedule to compute the price for an amortizing cap.

Examples

collapse all

Define the ZeroCurve, a, b, sigma, eta, and rho parameters to price the cap.

Settle = datetime(2007,12,15);
  
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes);
  
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
  
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
  
CapMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
  
Strike = [0.035 0.037 0.038 0.039 0.040 0.042 0.044 0.046 0.047 0.047 0.047]';
  
Price = capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity)
Price = 11×1

    0.0218
    0.3167
    0.7640
    1.3055
    1.9152
    3.0909
    4.7998
    7.3122
    9.7917
   11.4568
      ⋮

Define the ZeroCurve, a, b, sigma, eta, rho, and Notional parameters for the amortizing cap.

Settle = datetime(2007,12,15);
% Define ZeroCurve
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes);

irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);

% Define a, b, sigma, eta, and rho
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;

% Define the amortizing caps
CapMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
Strike = [0.035 0.037 0.038 0.039 0.040 0.042 0.044 0.046 0.047 0.047 0.047]';
Notional = {{datetime(2010,12,15) 100;datetime(2014,12,15) 70;datetime(2022,12,15) 40;datetime(2037,12,15) 10}};

% Price the amortizing caps
Price = capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity, 'Notional', Notional)
Price = 11×1

    0.0218
    0.3167
    0.7640
    1.1150
    1.5162
    2.2952
    2.8006
    3.6532
    3.6963
    3.8628
      ⋮

Input Arguments

collapse all

Zero-curve for the Linear Gaussian two-factor model, specified using IRDataCurve or RateSpec.

Data Types: struct

Mean reversion for first factor for the Linear Gaussian two-factor model, specified as a scalar numeric.

Data Types: double

Mean reversion for second factor for the Linear Gaussian two-factor model, specified as a scalar numeric.

Data Types: double

Volatility for first factor for the Linear Gaussian two-factor model, specified as a scalar numeric.

Data Types: double

Volatility for second factor for the Linear Gaussian two-factor model, specified as a scalar numeric.

Data Types: double

Scalar correlation of the factors, specified as a scalar numeric.

Data Types: double

Cap strike price, specified as a nonnegative integer using a NumCaps-by-1 vector.

Data Types: double

Cap maturity date, specified using a NumCaps-by-1 vector using a datetime array, string array, or date character vectors.

To support existing code, capbylg2f also accepts serial date numbers as inputs, but they are not recommended.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: Price = capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity,'Reset',1,'Notional',100)

Frequency of cap payments per year, specified as the comma-separated pair consisting of 'Reset' and a positive integers for the values [1,2,4,6,12] in a NumCaps-by-1 vector.

Data Types: single | double

Notional value of cap, specified as the comma-separated pair consisting of 'Notional' and a NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is a NumDates-by-2 cell array where the first column is dates and the second column is the associated principal amount. The date indicates the last day that the principal value is valid.

Data Types: single | double

Output Arguments

collapse all

Expected prices of cap, returned as a scalar or an NumCaps-by-1 vector.

More About

collapse all

Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate to be paid by the holder, based on an otherwise floating interest rate.

The payoff for a cap is:

max(CurrentRateCapRate,0)

For more information, see Cap.

Algorithms

The following defines the two-factor additive Gaussian interest rate model, given the ZeroCurve, a, b, sigma, eta, and rho parameters:

r(t)=x(t)+y(t)+ϕ(t)

dx(t)=a(x)(t)dt+σ(dW1(t),x(0)=0

dy(t)=b(y)(t)dt+η(dW2(t),y(0)=0

where dW1(t)dW2(t)=ρdt is a two-dimensional Brownian motion with correlation ρ and ϕ is a function chosen to match the initial zero curve.

References

[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer Finance, 2006.

Version History

Introduced in R2013a

expand all