This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Getting Started with Optimization Toolbox

Solve linear, quadratic, integer, and nonlinear optimization problems

Optimization Toolbox™ provides functions for finding parameters that minimize or maximize objectives while satisfying constraints. The toolbox includes solvers for linear programming (LP), mixed-integer linear programming (MILP), quadratic programming (QP), nonlinear programming (NLP), constrained linear least squares, nonlinear least squares, and nonlinear equations. You can define your optimization problem with functions and matrices or by specifying variable expressions that reflect the underlying mathematics.

You can use the toolbox solvers to find optimal solutions to continuous and discrete problems, perform tradeoff analyses, and incorporate optimization methods into algorithms and applications. The toolbox lets you perform design optimization tasks, including parameter estimation, component selection, and parameter tuning. It can be used to find optimal solutions in applications such as portfolio optimization, resource allocation, and production planning and scheduling.

Tutorials

About Optimization

  • Optimization Theory Overview

    Introduces optimization as a way of finding a set of parameters that can be defined as optimal. These parameters are obtained by minimizing or maximizing an objective function, subject to equality or inequality constraints and/or parameter bounds.

  • Optimization Toolbox Solvers

    What is an optimization solver?

  • Local vs. Global Optima

    Explains why solvers might not find the smallest minimum.