Mixed-Integer Linear Programming Basics: Problem-Based

This example shows how to solve a mixed-integer linear program. The example is not complex, but it shows typical steps in formulating a problem for the problem-based approach. For a video showing this example, see Solve a Mixed-Integer Linear Programming Problem using Optimization Modeling.

For the solver-based approach to this problem, see Mixed-Integer Linear Programming Basics: Solver-Based.

Problem Description

You want to blend steels with various chemical compositions to obtain 25 tons of steel with a specific chemical composition. The result should have 5% carbon and 5% molybdenum by weight, meaning 25 tons*5% = 1.25 tons of carbon and 1.25 tons of molybdenum. The objective is to minimize the cost for blending the steel.

This problem is taken from Carl-Henrik Westerberg, Bengt Bjorklund, and Eskil Hultman, “An Application of Mixed Integer Programming in a Swedish Steel Mill.” Interfaces February 1977 Vol. 7, No. 2 pp. 39–43, whose abstract is at http://interfaces.journal.informs.org/content/7/2/39.abstract.

Four ingots of steel are available for purchase. Only one of each ingot is available.

IngotWeight in Tons%Carbon%MolybdenumCost/Ton
1553$350
2343$330
3454$310
4634$280

Three grades of alloy steel are available for purchase, and one grade of scrap steel. Alloy and scrap steels can be purchased in fractional amounts.

Alloy%Carbon%MolybdenumCost/Ton
186$500
277$450
368$400
Scrap39$100

Formulate Problem

To formulate the problem, first decide on the control variables. Take variable ingots(1) = 1 to mean that you purchase ingot 1, and ingots(1) = 0 to mean that you do not purchase the ingot. Similarly, variables ingots(2) through ingots(4) are binary variables indicating whether you purchase ingots 2 through 4.

Variables alloys(1) through alloys(3) are the quantities in tons of alloys 1, 2, and 3 that you purchase. scrap is the quantity in tons of scrap steel that you purchase.

Create the optimization problem and the variables.

steelprob = optimproblem;
ingots = optimvar('ingots',4,'Type','integer','LowerBound',0,'UpperBound',1);
alloys = optimvar('alloys',3,'LowerBound',0);
scrap = optimvar('scrap','LowerBound',0);

Create expressions for the costs associated with the variables.

weightIngots = [5,3,4,6];
costIngots = weightIngots.*[350,330,310,280];
costAlloys = [500,450,400];
costScrap = 100;
cost = costIngots*ingots + costAlloys*alloys + costScrap*scrap;

Include the cost as the objective function in the problem.

steelprob.Objective = cost;

There are three equality constraints. The first constraint is that the total weight is 25 tons. Calculate the weight of the steel.

totalWeight = weightIngots*ingots + sum(alloys) + scrap;

The second constraint is that the weight of carbon is 5% of 25 tons, or 1.25 tons. Calculate the weight of the carbon in the steel.

carbonIngots = [5,4,5,3]/100;
carbonAlloys = [8,7,6]/100;
carbonScrap = 3/100;
totalCarbon = (weightIngots.*carbonIngots)*ingots + carbonAlloys*alloys + carbonScrap*scrap;

The third constraint is that the weight of molybdenum is 1.25 tons. Calculate the weight of the molybdenum in the steel.

molybIngots = [3,3,4,4]/100;
molybAlloys = [6,7,8]/100;
molybScrap = 9/100;
totalMolyb = (weightIngots.*molybIngots)*ingots + molybAlloys*alloys + molybScrap*scrap;

Include the constraints in the problem.

steelprob.Constraints.conswt = totalWeight == 25;
steelprob.Constraints.conscarb = totalCarbon == 1.25;
steelprob.Constraints.consmolyb = totalMolyb == 1.25;

Solve Problem

Now that you have all the inputs, call the solver.

[sol,fval] = solve(steelprob);
Solving problem using intlinprog.
LP:                Optimal objective value is 8125.600000.                                          

Cut Generation:    Applied 3 mir cuts.                                                              
                   Lower bound is 8495.000000.                                                      
                   Relative gap is 0.00%.                                                          


Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap tolerance of the optimal
value, options.AbsoluteGapTolerance = 0 (the default value). The intcon variables are
integer within tolerance, options.IntegerTolerance = 1e-05 (the default value).

View the solution.

sol.ingots
sol.alloys
sol.scrap
fval
ans =

    1.0000
    1.0000
         0
    1.0000


ans =

    7.2500
         0
    0.2500


ans =

    3.5000


fval =

   8.4950e+03

The optimal purchase costs $8,495. Buy ingots 1, 2, and 4, but not 3, and buy 7.25 tons of alloy 1, 0.25 ton of alloy 3, and 3.5 tons of scrap steel.

Related Topics