predict
Description
computes the exposure at default (EAD). predictedEAD
= predict(eadModel
,data
)
When using a Regression
model, the
predict
function operates on the underlying compact
statistical model and then transforms the predicted values back to the EAD
scale.
specifies options using one or more name-value arguments in addition to the input
arguments in the previous syntax.predictedEAD
= predict(___,Name=Value
)
Examples
Use Tobit EAD Model to Predict EAD
This example shows how to use fitEADModel
to create a Tobit
model and then predict exposure at default (EAD) values.
Load EAD Data
Load the EAD data.
load EADData.mat
head(EADData)
UtilizationRate Age Marriage Limit Drawn EAD _______________ ___ ___________ __________ __________ __________ 0.24359 25 not married 44776 10907 44740 0.96946 44 not married 2.1405e+05 2.0751e+05 40678 0 40 married 1.6581e+05 0 1.6567e+05 0.53242 38 not married 1.7375e+05 92506 1593.5 0.2583 30 not married 26258 6782.5 54.175 0.17039 54 married 1.7357e+05 29575 576.69 0.18586 27 not married 19590 3641 998.49 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05
rng('default'); NumObs = height(EADData); c = cvpartition(NumObs,'HoldOut',0.4); TrainingInd = training(c); TestInd = test(c);
Select Model Type
Select a model type for Tobit
or Regression
.
ModelType = "Tobit";
Select Conversion Measure
Select a conversion measure for the EAD response values.
ConversionMeasure = "LCF";
Create Tobit
EAD Model
Use fitEADModel
to create a Tobit
model using the TrainingInd
data.
eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ... ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD"); disp(eadModel);
Tobit with properties: CensoringSide: "both" LeftLimit: 0 RightLimit: 1 ModelID: "Tobit" Description: "" UnderlyingModel: [1x1 risk.internal.credit.TobitModel] PredictorVars: ["UtilizationRate" "Age" "Marriage"] ResponseVar: "EAD" LimitVar: "Limit" DrawnVar: "Drawn" ConversionMeasure: "lcf"
Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar'
and 'DrawnVar'
name-value arguments to modify the transformation.
disp(eadModel.UnderlyingModel);
Tobit regression model: EAD_lcf = max(0,min(Y*,1)) Y* ~ 1 + UtilizationRate + Age + Marriage Estimated coefficients: Estimate SE tStat pValue __________ __________ ________ __________ (Intercept) 0.22467 0.031085 7.2276 6.4149e-13 UtilizationRate 0.4714 0.020682 22.793 0 Age -0.0014209 0.00075844 -1.8735 0.061111 Marriage_not married -0.010543 0.015817 -0.66654 0.50512 (Sigma) 0.3618 0.0049991 72.374 0 Number of observations: 2627 Number of left-censored observations: 0 Number of uncensored observations: 2626 Number of right-censored observations: 1 Log-likelihood: -1057.9
Predict EAD
EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict
function with different options for the 'ModelLevel'
name-value argument.
predictedEAD = predict(eadModel, EADData(TestInd,:),ModelLevel="ead"); predictedConversion = predict(eadModel, EADData(TestInd,:),ModelLevel="ConversionMeasure");
Use Beta EAD Model to Predict EAD
This example shows how to use fitEADModel
to create a Beta
model and then predict exposure at default (EAD) values.
Load EAD Data
Load the EAD data.
load EADData.mat
head(EADData)
UtilizationRate Age Marriage Limit Drawn EAD _______________ ___ ___________ __________ __________ __________ 0.24359 25 not married 44776 10907 44740 0.96946 44 not married 2.1405e+05 2.0751e+05 40678 0 40 married 1.6581e+05 0 1.6567e+05 0.53242 38 not married 1.7375e+05 92506 1593.5 0.2583 30 not married 26258 6782.5 54.175 0.17039 54 married 1.7357e+05 29575 576.69 0.18586 27 not married 19590 3641 998.49 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05
rng('default'); NumObs = height(EADData); c = cvpartition(NumObs,'HoldOut',0.4); TrainingInd = training(c); TestInd = test(c);
Select Model Type
Select a model type for Beta
.
ModelType = "Beta";
Select Conversion Measure
Select a conversion measure for the EAD response values.
ConversionMeasure = "LCF";
Create Beta
EAD Model
Use fitEADModel
to create a Beta
model using EADData
.
eadModel = fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ... ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD"); disp(eadModel);
Beta with properties: BoundaryTolerance: 1.0000e-07 ModelID: "Beta" Description: "" UnderlyingModel: [1x1 risk.internal.credit.BetaModel] PredictorVars: ["UtilizationRate" "Age" "Marriage"] ResponseVar: "EAD" LimitVar: "Limit" DrawnVar: "Drawn" ConversionMeasure: "lcf"
Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar'
and 'DrawnVar'
name-value arguments to modify the transformation.
disp(eadModel.UnderlyingModel);
Beta regression model: logit(EAD_lcf) ~ 1_mu + UtilizationRate_mu + Age_mu + Marriage_mu log(EAD_lcf) ~ 1_phi + UtilizationRate_phi + Age_phi + Marriage_phi Estimated coefficients: Estimate SE tStat pValue __________ _________ _________ __________ (Intercept)_mu -0.67409 0.087774 -7.6798 1.954e-14 UtilizationRate_mu 1.6974 0.060621 28 0 Age_mu -0.0046006 0.0021317 -2.1582 0.030964 Marriage_not married_mu -0.0020533 0.040397 -0.050828 0.95947 (Intercept)_phi -0.43363 0.071602 -6.0562 1.5108e-09 UtilizationRate_phi 0.42461 0.051852 8.1889 4.4409e-16 Age_phi -0.0036089 0.0017592 -2.0515 0.040279 Marriage_not married_phi -0.016664 0.032976 -0.50535 0.61334 Number of observations: 4378 Log-likelihood: -5255.12
Predict EAD
EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict
function with different options for the 'ModelLevel'
name-value argument.
predictedEAD = predict(eadModel, EADData(TestInd,:),ModelLevel="ead"); predictedConversion = predict(eadModel, EADData(TestInd,:),ModelLevel="ConversionMeasure");
Input Arguments
eadModel
— Exposure at default model
Regression
object | Tobit
object | Beta
object
Exposure at default model, specified as a previously created Regression
,
Tobit
, or Beta
object using
fitEADModel
.
Data Types: object
data
— Data
table
Data, specified as a
NumRows
-by-NumCols
table with
predictor and response values. The variable names and data types must be
consistent with the underlying model.
Data Types: table
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Example: predictedEAD =
predict(eadModel,EADData(TestInd,:),ModelLevel='ead')
ModelLevel
— Model level
"ead"
(default) | character vector with value 'ead'
,
'conversionMeasure'
, or
'conversionTransform'
| string with value "ead"
,
"conversionMeasure"
, or
"conversionTransform"
Model level, specified as ModelLevel
and a
character vector or string.
Note
Regression
models support all three model levels,
but a Tobit
or Beta
model supports model levels only for 'ead'
and 'conversionMeasure'
.
Data Types: char
| string
Output Arguments
predictedEAD
— Exposure at default predicted values
vector
Exposure at default predicted values, returned as a
NumRows
-by-1
numeric vector.
More About
Prediction with EAD Models
Use a Regression, Tobit, or Beta model to predict EAD.
Regression
, Tobit
, or Beta
EAD models first
predict on the transformed space using the underlying linear regression model, and
then apply the inverse transformation to return predictions on the EAD scale.
References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.
Version History
Introduced in R2021bR2022b: Support for Beta
model
The eadModel
input supports an option for a
Beta
model object that you can create using fitEADModel
.
Commande MATLAB
Vous avez cliqué sur un lien qui correspond à cette commande MATLAB :
Pour exécuter la commande, saisissez-la dans la fenêtre de commande de MATLAB. Les navigateurs web ne supportent pas les commandes MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)