This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Getting Started with Statistics and Machine Learning Toolbox

Analyze and model data using statistics and machine learning

Statistics and Machine Learning Toolbox™ provides functions and apps to describe, analyze, and model data. You can use descriptive statistics and plots for exploratory data analysis, fit probability distributions to data, generate random numbers for Monte Carlo simulations, and perform hypothesis tests. Regression and classification algorithms let you draw inferences from data and build predictive models.

For multidimensional data analysis, Statistics and Machine Learning Toolbox provides feature selection, stepwise regression, principal component analysis (PCA), regularization, and other dimensionality reduction methods that let you identify variables or features that impact your model.

The toolbox provides supervised and unsupervised machine learning algorithms, including support vector machines (SVMs), boosted and bagged decision trees, k-nearest neighbor, k-means, k-medoids, hierarchical clustering, Gaussian mixture models, and hidden Markov models. Many of the statistics and machine learning algorithms can be used for computations on data sets that are too big to be stored in memory.