fibonacci
Fibonacci numbers
Syntax
Description
fibonacci(
returns
the nth Fibonacci Number.n
)
Examples
Find Fibonacci Numbers
Find the sixth Fibonacci number by using fibonacci
.
fibonacci(6)
ans = 8
Find the first 10 Fibonacci numbers.
n = 1:10; fibonacci(n)
ans = 1 1 2 3 5 8 13 21 34 55
Fibonacci Sequence Approximates Golden Ratio
The ratio of successive Fibonacci numbers converges to the golden ratio . Show this convergence by plotting this ratio against the golden ratio for the first 10 Fibonacci numbers.
n = 2:10; ratio = fibonacci(n)./fibonacci(n-1); plot(n,ratio,'--o') hold on line(xlim,[1.618 1.618]) hold off
Symbolically Represent Fibonacci Numbers
Use Fibonacci numbers in symbolic calculations
by representing them with symbolic input. fibonacci
returns
the input.
Represent the nth Fibonacci number.
syms n fibonacci(n)
ans = fibonacci(n)
Find Large Fibonacci Numbers
Find large Fibonacci numbers by specifying
the input symbolically using sym
. Symbolic input
returns exact symbolic output instead of double output. Convert symbolic
numbers to double by using the double
function.
Find the 300th Fibonacci number.
num = sym(300); fib300 = fibonacci(num)
fib300 = 222232244629420445529739893461909967206666939096499764990979600
Convert fib300
to double. The result is a
floating-point approximation.
double(fib300)
ans = 2.2223e+62
For more information on symbolic and double arithmetic, see Choose Numeric or Symbolic Arithmetic.
Golden Spiral Using Fibonacci Numbers
The Fibonacci numbers are commonly visualized by plotting the Fibonacci spiral. The Fibonacci spiral approximates the golden spiral.
Approximate the golden spiral for the first 8 Fibonacci numbers. Define the four cases for the right, top, left, and bottom squares in the plot by using a switch
statement. Form the spiral by defining the equations of arcs through the squares in eqnArc
. Draw the squares and arcs by using rectangle
and fimplicit
respectively.
x = 0; y = 1; syms v u axis off hold on for n = 1:8 a = fibonacci(n); % Define squares and arcs switch mod(n,4) case 0 y = y - fibonacci(n-2); x = x - a; eqnArc = (u-(x+a))^2 + (v-y)^2 == a^2; case 1 y = y - a; eqnArc = (u-(x+a))^2 + (v-(y+a))^2 == a^2; case 2 x = x + fibonacci(n-1); eqnArc = (u-x)^2 + (v-(y+a))^2 == a^2; case 3 x = x - fibonacci(n-2); y = y + fibonacci(n-1); eqnArc = (u-x)^2 + (v-y)^2 == a^2; end % Draw square pos = [x y a a]; rectangle('Position', pos) % Add Fibonacci number xText = (x+x+a)/2; yText = (y+y+a)/2; text(xText, yText, num2str(a)) % Draw arc interval = [x x+a y y+a]; fimplicit(eqnArc, interval, 'b') end
Input Arguments
More About
Version History
Introduced in R2017a