jacobian
Jacobian matrix of symbolic function
Syntax
Description
jacobian(
computes
the Jacobian matrix of symbolic
function f
,v
)f
with respect to v
. The (i,j) element of the result is .
Examples
The Jacobian of a vector function is a matrix of the partial derivatives of that function.
Compute the Jacobian matrix of [x*y*z,y^2,x + z]
with respect to [x,y,z]
.
syms x y z jacobian([x*y*z,y^2,x + z],[x,y,z])
ans =
Now, compute the Jacobian of [x*y*z,y^2,x + z]
with respect to [x;y;z]
.
jacobian([x*y*z,y^2,x + z], [x;y;z])
ans =
The Jacobian matrix is invariant to the orientation of the vector in the second input position.
The Jacobian of a scalar function is the transpose of its gradient.
Compute the Jacobian of 2*x + 3*y + 4*z
with respect to [x,y,z]
.
syms x y z jacobian(2*x + 3*y + 4*z,[x,y,z])
ans =
Now, compute the gradient of the same expression.
gradient(2*x + 3*y + 4*z,[x,y,z])
ans =
The Jacobian of a function with respect to a scalar is the first derivative of that function. For a vector function, the Jacobian with respect to a scalar is a vector of the first derivatives.
Compute the Jacobian of [x^2*y,x*sin(y)]
with respect to x
.
syms x y jacobian([x^2*y,x*sin(y)],x)
ans =
Now, compute the derivatives.
diff([x^2*y,x*sin(y)],x)
ans =
Specify polar coordinates , , and that are functions of time.
syms r(t) phi(t) theta(t)
Define the coordinate transformation form spherical coordinates to Cartesian coordinates.
R = [r*sin(phi)*cos(theta), r*sin(phi)*sin(theta), r*cos(phi)]
R(t) =
Find the Jacobian of the coordinate change from spherical coordinates to Cartesian coordinates.
jacobian(R,[r,phi,theta])
ans(t) =
Input Arguments
Scalar or vector function, specified as a symbolic expression, function, or vector.
If f
is a scalar, then the Jacobian matrix of
f
is the transposed gradient of f
.
Vector of variables or functions with respect to which you compute Jacobian,
specified as a symbolic variable, symbolic function, or vector of symbolic variables. If
v
is a scalar, then the result is equal to the transpose of
diff(f,v)
. If v
is an empty symbolic object,
such as sym([])
, then jacobian
returns an empty
symbolic object.
More About
The Jacobian matrix of the vector function f = (f1(x1,...,xn),...,fn(x1,...,xn)) is the matrix of the derivatives of f:
Version History
Introduced before R2006a
See Also
curl
| divergence
| diff
| gradient
| hessian
| laplacian
| potential
| vectorPotential
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)