enu2lla
Description
transforms the local east-north-up (ENU) Cartesian coordinates lla
= enu2lla(xyzENU
,lla0
,method
)xyzENU
to geodetic coordinates lla
. Specify the origin of the local ENU system
as the geodetic coordinates lla0
.
Note
The latitude and longitude values in the geodetic coordinate system use the World Geodetic System of 1984 (WGS84) standard.
Specify altitude as height in meters above the WGS84 reference ellipsoid.
Examples
Transform ENU Coordinates to Geodetic Coordinates
Specify the geodetic coordinates of the local origin in Zermatt, Switzerland.
lla0 = [46.017 7.750 1673]; % [lat0 lon0 alt0]
Specify the ENU coordinates of a point of interest, in meters. In this case, the point of interest is the Matterhorn.
xyzENU = [-7134.8 -4556.3 2852.4]; % [xEast yNorth zUp]
Transform the local ENU coordinates to geodetic coordinates using flat earth approximation.
lla = enu2lla(xyzENU,lla0,'flat')
lla = 1×3
103 ×
0.0460 0.0077 4.5254
Input Arguments
xyzENU
— Local ENU Cartesian coordinates
three-element row vector | n-by-3 matrix
Local ENU Cartesian coordinates, specified as a three-element row vector or an n-by-3 matrix. n is the number of points to transform. Specify each point in the form [xEast yNorth zUp]. xEast, yNorth, and zUp are the respective x-, y-, and z-coordinates, in meters, of the point in the local ENU system.
Example: [-7134.8 -4556.3 2852.4]
Data Types: double
lla0
— Origin of local ENU system in geodetic coordinates
three-element row vector | n-by-3 matrix
Origin of the local ENU system in the geodetic coordinates, specified as a
three-element row vector or an n-by-3 matrix. n is
the number of origin points. Specify each point in the form
[lat0
lon0
alt0]
. lat0 and
lon0 specify the latitude and longitude of the origin,
respectively, in degrees. alt0 specifies the altitude of the origin
in meters.
Example: [46.017 7.750 1673]
Data Types: double
method
— Transformation method
'flat'
| 'ellipsoid'
Transformation method, specified as 'flat'
or
'ellipsoid'
. This argument specifies whether the function assumes
the planet is flat or ellipsoidal.
The flat Earth transformation method has these limitations:
Assumes that the flight path and bank angle are zero.
Assumes that the flat Earth z-axis is normal to the Earth at only the initial geodetic latitude and longitude. This method has higher accuracy over small distances from the initial geodetic latitude and longitude, and closer to the equator. The method calculates a longitude with higher accuracy when the variation in latitude is smaller.
Latitude values of +90 and -90 degree may return unexpected values because of singularity at the poles.
Data Types: char
| string
Output Arguments
lla
— Geodetic coordinates
three-element row vector | n-by-3 matrix
Geodetic coordinates, returned as a three-element row vector or an
n-by-3 matrix. n is the number of transformed
points. Each point is in the form [lat
lon
alt]
. lat and lon
specify the latitude and longitude, respectively, in degrees. alt
specifies the altitude in meters.
Data Types: double
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Version History
Introduced in R2020b
Commande MATLAB
Vous avez cliqué sur un lien qui correspond à cette commande MATLAB :
Pour exécuter la commande, saisissez-la dans la fenêtre de commande de MATLAB. Les navigateurs web ne supportent pas les commandes MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)