CAEML Research in Hardware Design and Optimization Using Machine Learning
Chris Cheng, Hewlett Packard Enterprise
The Center for Advanced Electronics through Machine Learning (CAEML) was established in 2016. Much of its research is starting to bear fruit in real-world applications. We will highlight two Hewlett Packard Enterprise applications that use CAEML research results.
The first is a 56G PAM channel optimization and training speed-up using principal component analysis (PCA) and polynomial chaotic expansion (PCE) surrogate models. A 56G PAM SerDes and a channel with varying loss is measured and machine learning techniques are used to accelerate the channel optimization process and correctly model the SerDes without using any simulations.
The second is a proactive hardware failure prediction method using machine learning techniques developed by CAEML. The method is currently being deployed in the field to proactively remove drives from the field to avoid potential performance degradation and data loss.
The presentation covers:
- A brief introduction of CAEML
- Unique applications of machine learning for hardware design that are different from typical CNN or LSTM neural network applications
- Demonstration of a 56 PAM SerDes performance optimization using PCA and PCE surrogate models
- Production application using proactive hardware failure prediction with casual inference to remove bad drives in the field
- Future investigations of CAEML
CAEML researchers use MATLAB® and related toolboxes extensively throughout the application development process. For example, the standard MATLAB PCA package was used while custom MATLAB code was developed for the polynomial chaotic expansion surrogate models and the casual inference feature selection functions. The rich mathematical libraries allow rapid development of the prototype special functions.
Recorded: 6 Nov 2019
Featured Product
Statistics and Machine Learning Toolbox
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asie-Pacifique
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)