Computational Statistics: Feature Selection, Regularization, and Shrinkage with MATLAB
In this webinar, you will learn how to use Statistics and Machine Learning Toolbox to generate accurate predictive models from data sets that contain large numbers of correlated variables. By the end of the webinar, you will understand:
- Problems that can occur when linear regression is used to model such data sets
- How to use sequential feature selection and cross-validation to address these problems
- Alternative techniques based on regularization and shrinkage including lasso, ridge regression, and elastic net
- The characteristics of data sets that suggest regularization and shrinkage methods versus sequential feature selection
About the Presenter:
Richard Willey is a product marketing manager focused on MATLAB and add-on products for data analysis, statistics, and curve fitting. Prior to joining MathWorks in 2007, Richard worked at Wind River Systems and Symantec. Richard has dual master’s degrees in engineering and management from the Massachusetts Institute of Technology and a master’s degree in economics from Indiana University.
Recorded: 13 Oct 2011
Featured Product
Statistics and Machine Learning Toolbox
Up Next:
Related Videos:
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asie-Pacifique
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)