Skip to content
MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSe connecter
  • Access your MathWorks Account
    • Mon compte
    • Mon profil
    • Mes licences
    • Se déconnecter
  • Produits
  • Solutions
  • Le monde académique
  • Support
  • Communauté
  • Événements
  • Obtenir MATLAB
MathWorks
  • Produits
  • Solutions
  • Le monde académique
  • Support
  • Communauté
  • Événements
  • Obtenir MATLAB
  • Sign In to Your MathWorks AccountSe connecter
  • Access your MathWorks Account
    • Mon compte
    • Mon profil
    • Mes licences
    • Se déconnecter

Vidéos et webinars

  • MathWorks
  • Vidéos
  • Vidéos
  • Recherche
  • Vidéos
  • Recherche
  • Contacter l'équipe commerciale
  • Version d'essai
32:06 Video length is 32:06.
  • Description
  • Related Resources

Fix It Before It Breaks: Incremental Learning for Predictive Maintenance

Big data drives big decisions in smart factories. Connected, automated machines produce streams of real-time data, which artificial intelligence algorithms process into actionable knowledge. Producing that knowledge often requires significant time with batch processing that takes hours or runs overnight. This lag time between data and decision creates supply chain and maintenance inefficiencies: supplies must be stockpiled to prevent shortages and machines are serviced on a time-based rather than as-needed schedule. Presenting near real-time knowledge to decision makers enables better decisions and provides the competitive advantage of increased manufacturing efficiency.

The complexity of a supply chain or manufacturing process makes it difficult to manually develop the accurate models required for knowledge creation. Machine learning algorithms build these models automatically. Many currently deployed machine learning solutions use the Lambda Architecture, a hybrid of near real-time and batch processing. Such systems process streams of data in near real-time using a periodically updated model. But if the real-time data signals significant new trends, the model may not recognize or respond to those trends until the next update.

A new class of machine learning algorithms increases responsiveness and accuracy by dynamically updating their models in near real-time. These incremental or online learning algorithms process the incoming data into knowledge and then feed that knowledge back into the model. Updating the model from the data stream has several advantages: fewer copies of the data, which increases security; elimination of the time and cost of model redistribution; ability to handle data sets that exceed system memory or storage capacity; and the opportunity to apply machine learning in isolated environments, where batch processing resources are not available.
Recorded at Big Things Conference 2019.

Related Products

  • MATLAB Production Server
  • Simulink
  • MATLAB

3 Ways to Speed Up Model Predictive Controllers

Read white paper

A Practical Guide to Deep Learning: From Data to Deployment

Read ebook

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Deep Learning and Traditional Machine Learning: Choosing the Right Approach

Read ebook

Hardware-in-the-Loop Testing for Power Electronics Control Design

Read white paper

Predictive Maintenance with MATLAB

Read ebook

Electric Vehicle Modeling and Simulation - Architecture to Deployment : Webinar Series

Register for Free

How much do you know about power conversion control?

Start quiz
Related Information
Related Information
Request a trial

Feedback

Featured Product

MATLAB Production Server

  • Request Trial
  • Get Pricing

Up Next:

38:28
MATLAB Production Server for Financial Applications

Related Videos:

45:19
Enabling Project-Based Learning with MATLAB, Simulink, and...
42:22
Enabling Project-Based Learning with MATLAB and Simulink
21:28
Unique Design for Position Feedback Setup in a PMSM for a...
18:06
Practical Approaches for Re-architecture for AUTOSAR or...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contacter l'équipe commerciale
  • Version d'essai

MathWorks

Accelerating the pace of engineering and science

MathWorks est le leader mondial des logiciels de calcul mathématique pour les ingénieurs et les scientifiques.

Découvrir…

Découvrir les produits

  • MATLAB
  • Simulink
  • Version étudiante
  • Support Hardware
  • File Exchange

Essayer ou acheter

  • Téléchargements
  • Version d'essai
  • Contacter un commercial
  • Tarifs et licences
  • Comment acheter

Se former

  • Documentation
  • Tutoriels
  • Exemples
  • Vidéos et webinars
  • Formation

Obtenir de l'aide

  • Aide à l'installation
  • MATLAB Answers
  • Services de consulting
  • Centre de gestion des licences
  • Contacter le support technique

La société

  • Offres d'emploi
  • Actualités
  • Mission sociale
  • Témoignages clients
  • La société
  • Select a Web Site United States
  • Trust Center
  • Marques déposées
  • Charte de confidentialité
  • Lutte anti-piratage
  • État des applications

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Rejoignez la conversation