nrOFDMDemodulate
Syntax
Description
demodulates grid
= nrOFDMDemodulate(waveform
,nrb
,scs
,initialNSlot
)waveform
for nrb
, the specified number
of resource blocks, subcarrier spacing scs
, and initial slot number
initialNSlot
.
specifies options by using one or more name-value pair arguments in addition to the input
arguments in any of the previous syntaxes.grid
= nrOFDMDemodulate(___,Name,Value
)
Examples
Demodulate OFDM Waveform
Recover a transmitted carrier resource array by demodulating an OFDM waveform.
Set carrier configuration parameters, specifying 106 resource blocks (RBs) in the carrier resource array.
carrier = nrCarrierConfig('NSizeGrid',106);
Generate physical downlink shared channel (PDSCH) demodulation reference signal (DM-RS) symbols and indices.
p = 2;
pdsch = nrPDSCHConfig('NumLayers',p);
sym = nrPDSCHDMRS(carrier,pdsch);
ind = nrPDSCHDMRSIndices(carrier,pdsch);
Create a carrier resource array containing the PDSCH DM-RS symbols.
txGrid = nrResourceGrid(carrier,p); txGrid(ind) = sym;
Generate OFDM modulated waveform.
[txWaveform,~] = nrOFDMModulate(carrier,txGrid);
Pass the waveform through a simple 2-by-1 channel.
H = [0.6; 0.4]; waveform = txWaveform*H;
Recover the carrier resource array by demodulating the received OFDM waveform.
grid = nrOFDMDemodulate(carrier,waveform);
Demodulate OFDM Waveform with Extended Cyclic Prefix
Recover a resource array that contains PDSCH DM-RS symbols by demodulating an OFDM waveform.
Set carrier configuration parameters, specifying a subcarrier spacing of 60 kHz.
scs = 60;
carrier = nrCarrierConfig('SubcarrierSpacing',scs);
Generate PDSCH DM-RS symbols and indices.
p = 2;
pdsch = nrPDSCHConfig('NumLayers',p);
sym = nrPDSCHDMRS(carrier,pdsch);
ind = nrPDSCHDMRSIndices(carrier,pdsch);
Create a carrier resource array containing the PDSCH DM-RS symbols.
txGrid = nrResourceGrid(carrier,p); txGrid(ind) = sym;
Generate an OFDM modulated waveform, specifying the subcarrier spacing, initial slot number, and cyclic prefix length.
initialNSlot = carrier.NSlot; cpl = 'extended'; [txWaveform,info] = nrOFDMModulate(txGrid,scs,initialNSlot,'CyclicPrefix',cpl);
Pass the waveform through a simple 2-by-1 channel.
H = [0.9; 0.95]; waveform = txWaveform*H;
Recover the carrier resource array by demodulating the received OFDM waveform.
nrb = carrier.NSizeGrid;
grid = nrOFDMDemodulate(waveform,nrb,scs,initialNSlot,'CyclicPrefix',cpl);
Demodulate OFDM Waveform with Specified Sample Rate
Recover a transmitted resource array that contains sounding reference signals (SRSs) and spans an entire frame by demodulating an OFDM waveform.
Set carrier configuration parameters, specifying a subcarrier spacing of 30 kHz and 24 resource blocks in the carrier resource array.
carrier = nrCarrierConfig('SubcarrierSpacing',30,'NSizeGrid',24);
Configure SRS parameters, setting the slot periodicity and offset.
srs = nrSRSConfig('SRSPeriod',[4 0]);
Get OFDM information for the specified carrier configuration.
info = nrOFDMInfo(carrier);
Produce the frame resource array by creating and concatenating slot resource arrays.
frameGrid = []; for nslot = 0:(info.SlotsPerFrame - 1) carrier.NSlot = nslot; slotGrid = nrResourceGrid(carrier); ind = nrSRSIndices(carrier,srs); sym = nrSRS(carrier,srs); slotGrid(ind) = sym; frameGrid = [frameGrid slotGrid]; end
Generate the OFDM modulated waveform.
[txWaveform,~] = nrOFDMModulate(carrier,frameGrid);
Pass the waveform through a simple channel.
H = 0.86; waveform = txWaveform*H;
Recover the carrier resource array by demodulating the received OFDM waveform, specifying the sample rate.
sr = info.SampleRate;
grid = nrOFDMDemodulate(carrier,waveform,'SampleRate',sr);
Input Arguments
carrier
— Carrier configuration parameters
nrCarrierConfig
object
Carrier configuration parameters for a specific OFDM numerology, specified as an
nrCarrierConfig
object. Only
these object properties are relevant for this function.
waveform
— OFDM modulated waveform
complex-valued matrix
OFDM modulated waveform, specified as a complex-valued matrix of size T-by-R.
T is the number of time-domain samples in the waveform.
R is the number of receive antennas.
Data Types: double
Complex Number Support: Yes
nrb
— Number of resource blocks
integer from 1 to 275
Number of resource blocks, specified as an integer from 1 to 275.
Data Types: double
scs
— Subcarrier spacing in kHz
15
| 30
| 60
| 120
| 240
| 480
| 960
Subcarrier spacing in kHz, specified as 15
, 30
,
60
, 120
, 240
,
480
, or 960
.
Data Types: double
initialNSlot
— Initial slot number
nonnegative integer
Initial slot number, in 0-based form, specified as a nonnegative integer. The
function selects the appropriate cyclic prefix lengths for OFDM
demodulation
by using the value of initialNSlot
mod S, where
S is the number of slots per subframe.
Data Types: double
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: 'CyclicPrefixFraction',0.75
specifies the start location for
demodulation relative to the cyclic prefix length.
CyclicPrefix
— Cyclic prefix length
'normal'
(default) | 'extended'
Cyclic prefix length, specified as the comma-separated pair consisting of
'CyclicPrefix'
and one of these values:
'normal'
— Use this value to specify normal cyclic prefix. This option corresponds to 14 OFDM symbols in a slot.'extended'
— Use this value to specify extended cyclic prefix. This option corresponds to 12 OFDM symbols in a slot. For the numerologies specified in TS 38.211 Section 4.2, the extended cyclic prefix length only applies to 60 kHz subcarrier spacing.
Note
If you specify the carrier
input, use the
CyclicPrefix
property of the carrier
input to specify the cyclic prefix length. You cannot use this name-value pair
argument together with the carrier
input.
Data Types: char
| string
Nfft
— Number of FFT points
integer greater than 127 (default depends on other input values) | []
Number of fast Fourier transform (FFT) points, specified as the comma-separated pair
consisting of 'Nfft'
and a nonnegative integer greater than 127 or
[]
. The value you specify must result in integer-valued cyclic
prefix lengths and a maximum occupancy of 100%. The occupancy is defined as the value of (12 ×
NRB)/Nfft
, where NRB is the number of
resource blocks.
If you do not specify this input, or if you specify 'Nfft',[]
, the
function sets an integer value greater than 127 as a default value for this input. The
actual default value depends on other input values.
If you do not specify the
SampleRate
input, or if you specify'SampleRate',[]
, the function setsNfft
satisfying these conditions.Nfft
is an integer power of 2.Nfft
results in a maximum occupancy of 85%.
If you specify the
SampleRate
input, the function setsNfft
satisfying these conditions.
For more information, see Configure OFDM Sample Rate and FFT Size.
Data Types: double
SampleRate
— Waveform sample rate
positive scalar (default depends on other input values) | []
Waveform sample rate, specified as the comma-separated pair consisting of
'SampleRate'
and either a positive scalar or
[]
.
If you do not specify this input, or if you specify
'SampleRate',[]
, then the function sets this input to the value of
Nfft × SCS.
For more information, see Configure OFDM Sample Rate and FFT Size.
Data Types: double
CarrierFrequency
— Carrier frequency in Hz
0
(default) | real number
Carrier frequency in Hz, specified as the comma-separated pair consisting of
'CarrierFrequency'
and a real number. This input corresponds to
f0, defined in TS 38.211 Section
5.4.
Data Types: double
CyclicPrefixFraction
— FFT window position within cyclic prefix
0.5
(default) | scalar in the interval [0, 1]
Fast Fourier transform (FFT) window position within the cyclic prefix, specified
as the comma-separated pair consisting of 'CyclicPrefixFraction'
and a scalar in the interval [0, 1].
The value that you specify indicates the start location for OFDM demodulation relative to the beginning of the cyclic prefix.
Data Types: double
Output Arguments
grid
— Carrier resource array
complex-valued array
Carrier resource array, returned as a complex-valued array of size K-by-L-by-R.
K is the number of subcarriers.
L is the number of OFDM symbols.
R is the number of receive antennas.
Data Types: double
Complex Number Support: Yes
References
[1] 3GPP TS 38.101-1. “NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone.” 3rd Generation Partnership Project; Technical Specification Group Radio Access Network.
[2] 3GPP TS 38.101-2. “NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone.” 3rd Generation Partnership Project; Technical Specification Group Radio Access Network.
[3] 3GPP TS 38.104. “NR; Base Station (BS) radio transmission and reception.” 3rd Generation Partnership Project; Technical Specification Group Radio Access Network.
[4] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access Network.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:
The
'SampleRate'
name-value argument must be compile-time constant for code generation. For example, when you call the function with'SampleRate',15.36e6
, include{coder.Constant('SampleRate'),coder.Constant(15.36e6)}
in the-args
value of thecodegen
function. For more information, see thecoder.Constant
(MATLAB Coder) class.If you specify the
'SampleRate'
name-value argument, thenrb
,scs
input arguments and the'Nfft'
name-value argument must also be compile-time constants. For example, include also{coder.Constant(nrb)}
and{coder.Constant(scs)}
in the-args
value of thecodegen
function.The
'SampleRate'
name-value pair argument cannot be used together with thecarrier
input.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™. (since R2024a)
The nrOFDMDemodulate
function
fully supports GPU arrays. To run the function on a GPU, specify the input data as a gpuArray
(Parallel Computing Toolbox). For more information, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox).
Version History
Introduced in R2020bR2024a: GPU array support
The nrOFDMDemodulate
function now supports GPU arrays. For more
information, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox).
R2023a: Subcarrier spacing for FR2-2
The function now supports 480 kHz and 960 kHz subcarrier spacings, as defined in TS 38.211 Sections 4.2 and 4.3.
R2023a: C/C++ code generation updates
For C/C++ code generation, the limitation to specify
'CyclicPrefix'
, 'Windowing'
,
'CarrierFrequency'
, 'CyclicPrefixFraction'
, or
'Nfft'
name-value arguments as compile-time constants has been
removed. However, if you specify the 'SampleRate'
name-value argument,
the 'Nfft'
name-value argument must still be compile-time constant for
code generation.
See Also
Functions
Objects
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)