calibrate
Description
calibrate(
specifies additional options using name-value arguments. You can choose the hardware
resource to extract i-vectors and whether to use prefetch queuing when reading from a
datastore.ivs
,data
,labels
,Name=Value
)
Examples
Train Acoustic Fault Recognition System
Download and unzip the air compressor data set [1]. This data set consists of recordings from air compressors in a healthy state or one of seven faulty states.
loc = matlab.internal.examples.downloadSupportFile("audio", ... "AirCompressorDataset/AirCompressorDataset.zip"); unzip(loc,pwd)
Create an audioDatastore
object to manage the data and split it into training and validation sets.
ads = audioDatastore(pwd,IncludeSubfolders=true,LabelSource="foldernames");
[adsTrain,adsTest] = splitEachLabel(ads,0.8,0.2);
Read an audio file from the datastore and save the sample rate. Listen to the audio signal and plot the signal in the time domain.
[x,fileInfo] = read(adsTrain); fs = fileInfo.SampleRate; sound(x,fs) t = (0:size(x,1)-1)/fs; plot(t,x) xlabel("Time (s)") title("State = " + string(fileInfo.Label)) axis tight
Create an i-vector system with DetectSpeech
set to false
. Turn off the verbose behavior.
faultRecognizer = ivectorSystem(SampleRate=fs,DetectSpeech=false, ...
Verbose=false)
faultRecognizer = ivectorSystem with properties: InputType: 'audio' SampleRate: 16000 DetectSpeech: 0 Verbose: 0 EnrolledLabels: [0×2 table]
Train the i-vector extractor and the i-vector classifier using the training datastore.
trainExtractor(faultRecognizer,adsTrain, ... UBMNumComponents=80, ... UBMNumIterations=3, ... ... TVSRank=40, ... TVSNumIterations=3) trainClassifier(faultRecognizer,adsTrain,adsTrain.Labels, ... NumEigenvectors=7, ... ... PLDANumDimensions=32, ... PLDANumIterations=5)
Calibrate the scores output by faultRecognizer
so they can be interpreted as a measure of confidence in a positive decision. Turn the verbose behavior back on. Enroll all of the labels from the training set.
calibrate(faultRecognizer,adsTrain,adsTrain.Labels) faultRecognizer.Verbose = true; enroll(faultRecognizer,adsTrain,adsTrain.Labels)
Extracting i-vectors ...done. Enrolling i-vectors ...........done. Enrollment complete.
Use the read-only property EnrolledLabels
to view the enrolled labels and the corresponding i-vector templates.
faultRecognizer.EnrolledLabels
ans=8×2 table
ivector NumSamples
____________ __________
Bearing {7×1 double} 180
Flywheel {7×1 double} 180
Healthy {7×1 double} 180
LIV {7×1 double} 180
LOV {7×1 double} 180
NRV {7×1 double} 180
Piston {7×1 double} 180
Riderbelt {7×1 double} 180
Use the identify
function with the PLDA scorer to predict the condition of machines in the test set. The identify
function returns a table of possible labels sorted in descending order of confidence.
[audioIn,audioInfo] = read(adsTest); trueLabel = audioInfo.Label
trueLabel = categorical
Bearing
predictedLabels = identify(faultRecognizer,audioIn,"plda")
predictedLabels=8×2 table
Label Score
_________ __________
Bearing 0.99997
Flywheel 2.265e-05
Piston 8.6076e-08
LIV 1.4237e-15
NRV 4.5529e-16
Riderbelt 3.7359e-16
LOV 6.3025e-19
Healthy 4.2094e-30
By default, the identify
function returns all possible candidate labels and their corresponding scores. Use NumCandidates
to reduce the number of candidates returned.
results = identify(faultRecognizer,audioIn,"plda",NumCandidates=3)
results=3×2 table
Label Score
________ __________
Bearing 0.99997
Flywheel 2.265e-05
Piston 8.6076e-08
References
[1] Verma, Nishchal K., et al. “Intelligent Condition Based Monitoring Using Acoustic Signals for Air Compressors.” IEEE Transactions on Reliability, vol. 65, no. 1, Mar. 2016, pp. 291–309. DOI.org (Crossref), doi:10.1109/TR.2015.2459684.
Input Arguments
ivs
— i-vector system
ivectorSystem
object
i-vector system, specified as an object of type ivectorSystem
.
data
— Training data for i-vector system
cell array | audioDatastore
| signalDatastore
| TransformedDatastore
Training data for an i-vector system, specified as a cell array or as an
audioDatastore
, signalDatastore
, or
TransformedDatastore
object.
If
InputType
is set to"audio"
when the i-vector system is created, specifydata
as one of these:A cell array of single-channel audio signals, each specified as a column vector with underlying type
single
ordouble
.An
audioDatastore
object or asignalDatastore
object that points to a data set of mono audio signals.A
TransformedDatastore
with an underlyingaudioDatastore
orsignalDatastore
that points to a data set of mono audio signals. The output from calls toread
from the transform datastore must be mono audio signals with underlying data typesingle
ordouble
.
If
InputType
is set to"features"
when the i-vector system is created, specifydata
as one of these:A cell array of matrices containing the audio features.
An
audioDatastore
,signalDatastore
, orTransformedDatastore
whose read function returns a feature matrix.
The feature matrices must consist of audio features with underlying type
single
ordouble
where the number of features (columns) is locked the first timetrainExtractor
is called and the number of hops (rows) is variable-sized. The number of features input in any subsequent calls to any of the object functions must be equal to the number of features used when callingtrainExtractor
.
Data Types: cell
| audioDatastore
| signalDatastore
labels
— Classification labels
categorical array | cell array | string array
Classification labels used by the i-vector system, specified as one of the following:
A categorical array
A cell array of character vectors
A string array
Note
The number of audio signals in data
must match the number of
labels
.
Data Types: categorical
| cell
| string
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: calibrate(ivs,data,labels,DispatchInBackground=true)
ExecutionEnvironment
— Hardware resource for execution
"auto"
(default) | "cpu"
| "gpu"
| "multi-gpu"
| "parallel"
Hardware resource for execution, specified as one of these:
"auto"
— Use the GPU if it is available. Otherwise, use the CPU."cpu"
— Use the CPU."gpu"
— Use the GPU. This option requires Parallel Computing Toolbox™."multi-gpu"
— Use multiple GPUs on one machine, using a local parallel pool based on your default cluster profile. If there is no current parallel pool, the software starts a parallel pool with pool size equal to the number of available GPUs. This option requires Parallel Computing Toolbox."parallel"
— Use a local or remote parallel pool based on your default cluster profile. If there is no current parallel pool, the software starts one using the default cluster profile. If the pool has access to GPUs, then only workers with a unique GPU perform training computation. If the pool does not have GPUs, then the training takes place on all available CPU workers. This option requires Parallel Computing Toolbox.
Data Types: char
| string
DispatchInBackground
— Option to use prefetch queuing
false
(default) | true
Option to use prefetch queuing when reading from a datastore, specified as a logical value. This argument requires Parallel Computing Toolbox.
Data Types: logical
Version History
Introduced in R2022a
See Also
trainExtractor
| trainClassifier
| enroll
| unenroll
| detectionErrorTradeoff
| verify
| identify
| ivector
| info
| addInfoHeader
| release
| ivectorSystem
| speakerRecognition
Commande MATLAB
Vous avez cliqué sur un lien qui correspond à cette commande MATLAB :
Pour exécuter la commande, saisissez-la dans la fenêtre de commande de MATLAB. Les navigateurs web ne supportent pas les commandes MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)