La traduction de cette page n'est pas à jour. Cliquez ici pour voir la dernière version en anglais.
Imagerie médicale
Appliquez le Deep Learning à des applications d’imagerie médicale en utilisant Deep Learning Toolbox™ avec Medical Imaging Toolbox™.
Applications
Medical Image Labeler | Interactively explore, label, and publish animations of 2-D or 3-D medical image data (depuis R2022b) |
Fonctions
cellpose | Configure Cellpose model for cell segmentation (depuis R2023b) |
segmentCells2D | Segment 2-D image using Cellpose (depuis R2023b) |
segmentCells3D | Segment 3-D image volume using Cellpose (depuis R2023b) |
Rubriques
- Get Started with Medical Image Labeler (Medical Imaging Toolbox)
Interactively explore, label, and publish animations of 2-D or 3-D medical image data.
- Get Started with MONAI Label in Medical Image Labeler (Medical Imaging Toolbox)
Apply AI models from the MONAI Label library for 3-D medical image segmentation.
- Getting Started with Cellpose (Medical Imaging Toolbox)
Segment cells from microscopy images using a pretrained Cellpose model, or train a custom model.
- Create Datastores for Medical Image Semantic Segmentation (Medical Imaging Toolbox)
Create datastores that contain images and pixel label data from a
groundTruthMedical
object for training semantic segmentation deep learning networks.- Convert Ultrasound Image Series into Training Data for 2-D Semantic Segmentation Network (Medical Imaging Toolbox)
- Create Training Data for 3-D Medical Image Semantic Segmentation (Medical Imaging Toolbox)
- Datastores for Deep Learning
Learn how to use datastores in deep learning applications.
- List of Deep Learning Layers
Discover all the deep learning layers in MATLAB®.