summary
Summarize performance attribution by Brinson model
Description
generates a table that summarizes the final results (aggregated over all time periods and
categories) of the performance attribution by the Brinson model.SummaryTable
= summary(brinsonAttributionObj
)
Examples
Generate Summary Table Using brinsonAttribution
Object
This example shows how to create a brinsonAttribution
object and then use summary
to generate a table that summarizes the final results of the performance attribution by the Brinson model, aggregated over all time periods and categories (sectors).
Prepare Data
Create a table for the monthly prices for four assets.
GM =[17.82;22.68;19.37;20.28]; HD = [39.79;39.12;40.67;40.96]; KO = [38.98;39.44;40.00;40.20]; PG = [56.38;57.08;57.76;55.54]; MonthlyPrices = table(GM,HD,KO,PG);
Use tick2ret
to define the monthly returns.
MonthlyReturns = tick2ret(MonthlyPrices.Variables)'; [NumAssets,NumPeriods] = size(MonthlyReturns);
Define the periods.
Period = ones(NumAssets*NumPeriods,1); for k = 1:NumPeriods Period(k*NumAssets+1:end,1) = Period(k*NumAssets,1) + 1; end
Define the categories for the four assets.
Name = repmat(string(MonthlyPrices.Properties.VariableNames(:)),NumPeriods,1); Categories = repmat(categorical([ ... "Consumer Discretionary"; ... "Consumer Discretionary"; ... "Consumer Staples"; ... "Consumer Staples"]),NumPeriods,1);
Define benchmark and portfolio weights.
BenchmarkWeight = repmat(1./NumAssets.*ones(NumAssets, 1),NumPeriods,1); PortfolioWeight = repmat([1;0;1;1]./3,NumPeriods,1);
Create AssetTable
Input
Create AssetTable
as the input for the brinsonAttribution
object.
AssetTable = table(Period, Name, ... MonthlyReturns(:), Categories, PortfolioWeight, BenchmarkWeight, ... VariableNames=["Period","Name","Return","Category","PortfolioWeight","BenchmarkWeight"])
AssetTable=12×6 table
Period Name Return Category PortfolioWeight BenchmarkWeight
______ ____ _________ ______________________ _______________ _______________
1 "GM" 0.27273 Consumer Discretionary 0.33333 0.25
1 "HD" -0.016838 Consumer Discretionary 0 0.25
1 "KO" 0.011801 Consumer Staples 0.33333 0.25
1 "PG" 0.012416 Consumer Staples 0.33333 0.25
2 "GM" -0.14594 Consumer Discretionary 0.33333 0.25
2 "HD" 0.039622 Consumer Discretionary 0 0.25
2 "KO" 0.014199 Consumer Staples 0.33333 0.25
2 "PG" 0.011913 Consumer Staples 0.33333 0.25
3 "GM" 0.04698 Consumer Discretionary 0.33333 0.25
3 "HD" 0.0071306 Consumer Discretionary 0 0.25
3 "KO" 0.005 Consumer Staples 0.33333 0.25
3 "PG" -0.038435 Consumer Staples 0.33333 0.25
Create brinsonAttribution
Object
Use brinsonAttribution
to create the brinsonAttribution
object.
BrinsonPAobj = brinsonAttribution(AssetTable)
BrinsonPAobj = brinsonAttribution with properties: NumAssets: 4 NumPortfolioAssets: 3 NumBenchmarkAssets: 4 NumPeriods: 3 NumCategories: 2 AssetName: [4x1 string] AssetReturn: [4x3 double] AssetCategory: [4x3 categorical] PortfolioAssetWeight: [4x3 double] BenchmarkAssetWeight: [4x3 double] PortfolioCategoryReturn: [2x3 double] BenchmarkCategoryReturn: [2x3 double] PortfolioCategoryWeight: [2x3 double] BenchmarkCategoryWeight: [2x3 double] PortfolioReturn: 0.0598 BenchmarkReturn: 0.0540 ActiveReturn: 0.0059
Generate Summary Table
Use the brinsonAttribution object with summary
to generate a table that summarizes the final results of the performance attribution by the Brinson model, aggregated over all time periods and categories.
SummaryTable = summary(BrinsonPAobj)
SummaryTable=11×1 table
Brinson Attribution Summary
___________________________
Total Number of Assets 4
Number of Assets in Portfolio 3
Number of Assets in Benchmark 4
Number of Periods 3
Number of Categories 2
Portfolio Return 0.059847
Benchmark Return 0.05399
Active Return 0.0058578
Allocation Effect -0.014353
Selection Effect 0.030316
Interaction Effect -0.010105
Input Arguments
brinsonAttributionObj
— Brinson attribution model
object
Brinson attribution model, specified as a brinsonAttribution
object.
Data Types: object
Output Arguments
SummaryTable
— Metrics summarizing performance attribution by Brinson model
table
Metrics summarizing the performance attribution by the Brinson model, returned as a table where each row of the table is a calculated metric as follows:
Total Number of Assets
— Total for assets in theAssetTable
Number of Assets in Portfolio
— Total assets in the portfolio, as defined inAssetTable
Number of Assets in Benchmark
— The total assets in the benchmark, as defined inAssetTable
Number of Periods
— Total number ofPeriods
, as defined inAssetTable
Portfolio Return
— Portfolio return, as defined inAssetTable
Benchmark Return
— Benchmark return, as defined inAssetTable
Active Return
— Calculated active return for the portfolio, as defined inAssetTable
Allocation Effect
— Allocation effect for the portfolio, as defined inAssetTable
Selection Effect
— Selection effect for the portfolio, as defined inAssetTable
Interaction Effect
— Interaction effect for the portfolio, as defined inAssetTable
References
[1] Brinson, G. P. and Fachler, N. “Measuring Non-US Equity Portfolio Performance.” Journal of Portfolio Management. Spring 1985: 73–76.
[2] Brinson, G. P., Hood, L. R., and Beebower, G. L. “Determinants of Portfolio Performance.” Financial Analysts Journal. Vol. 42, No. 4, 1986: 39–44.
[3] Menchero, J. “Multiperiod Arithmetic Attribution.” Financial Analysts Journal. Vol. 60, No. 4, 2004: 76–91.
[4] Tuttle, D. L., Pinto, J. E., and McLeavey, D. W. Managing Investment Portfolios: A Dynamic Process. Third Edition. CFA Institute, 2007.
Version History
Introduced in R2022b
Ouvrir l'exemple
Vous possédez une version modifiée de cet exemple. Souhaitez-vous ouvrir cet exemple avec vos modifications ?
Commande MATLAB
Vous avez cliqué sur un lien qui correspond à cette commande MATLAB :
Pour exécuter la commande, saisissez-la dans la fenêtre de commande de MATLAB. Les navigateurs web ne supportent pas les commandes MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)