Main Content

Spread

Spread instrument object

Since R2020a

Description

Create and price a Spread instrument object for one or more Spread instruments using this workflow:

  1. Use fininstrument to create a Spread instrument object for one or more Spread instruments.

  2. Use finmodel to specify a BlackScholes or Bachelier model for the Spread instrument object.

  3. Choose a pricing method.

For more information on this workflow, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.

For more information on the available models and pricing methods for a Spread instrument, see Choose Instruments, Models, and Pricers.

Creation

Description

SpreadObj = fininstrument(InstrumentType,'Strike',strike_value,'ExerciseDate',exercise_date) creates a Spread object for one or more Spread instruments by specifying InstrumentType and sets the properties for the required name-value pair arguments Strike and ExerciseDate.

example

SpreadObj = fininstrument(___,Name,Value) sets optional properties using additional name-value pairs in addition to the required arguments in the previous syntax. For example, SpreadObj = fininstrument("Spread",'Strike',100,'ExerciseDate',datetime(2019,1,30),'OptionType',"put",'ExerciseStyle',"American",'Name',"spread_instrument") creates a Spread put option with an American exercise. You can specify multiple name-value pair arguments.

example

Input Arguments

expand all

Instrument type, specified as a string with the value of "Spread", a character vector with the value of 'Spread', an NINST-by-1 string array with values of "Spread", or an NINST-by-1 cell array of character vectors with values of 'Spread'.

Data Types: char | cell | string

Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: SpreadObj = fininstrument("Spread",'Strike',100,'ExerciseDate',datetime(2019,1,30),'OptionType',"put",'ExerciseStyle',"American",'Name',"spread_instrument")

Required Spread Name-Value Pair Arguments

expand all

Option strike price value, specified as the comma-separated pair consisting of 'Strike' and a scalar nonnegative numeric or an NINST-by-1 nonnegative numeric vector.

Data Types: double

Option exercise date, specified as the comma-separated pair consisting of 'ExerciseDate' and a scalar or an NINST-by-1 vector using a datetime array, string array, or date character vectors.

Note

For a European option, there is only one ExerciseDate on the option expiry date.

To support existing code, Spread also accepts serial date numbers as inputs, but they are not recommended.

If you use date character vectors or strings, the format must be recognizable by datetime because the ExerciseDate property is stored as a datetime.

Optional Spread Name-Value Pair Arguments

expand all

Option type, specified as the comma-separated pair consisting of 'OptionType' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string array.

Data Types: char | cell | string

Option exercise style, specified as the comma-separated pair consisting of 'ExerciseStyle' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string array.

Data Types: string | cell | char

User-defined name for one of more instruments, specified as the comma-separated pair consisting of 'Name' and a scalar string or character vector or an NINST-by-1 cell array of character vectors or string array.

Data Types: char | cell | string

Properties

expand all

Option strike price value, returned as a scalar nonnegative numeric or an NINST-by-1 nonnegative numeric vector.

Data Types: double

Option exercise date, returned as a scalar datetime or an NINST-by-1 vector of datetimes.

Data Types: datetime

Option type, returned as a scalar string or an NINST-by-1 string array with values of "call" or "put".

Data Types: string

Option exercise style, returned as a string or an NINST-by-1 string array with values of "European".

Data Types: string

User-defined name for the instrument, returned as a scalar string or an NINST-by-1 string array.

Data Types: string

Examples

collapse all

This example shows the workflow to price a Spread instrument with a European option when using a BlackScholes model and a BjerksundStensland pricing method.

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object.

SpreadOpt = fininstrument("Spread",'Strike',105,'ExerciseDate',datetime(2021,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"spread_option")
SpreadOpt = 
  Spread with properties:

       OptionType: "put"
           Strike: 105
    ExerciseStyle: "european"
     ExerciseDate: 15-Sep-2021
             Name: "spread_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',[0.2,0.1])
BlackScholesModel = 
  BlackScholes with properties:

     Volatility: [0.2000 0.1000]
    Correlation: [2x2 double]

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BjerksundStensland Pricer Object

Use finpricer to create a BjerksundStensland pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',[103 105],'DividendValue',[0.025 , 0.028],'PricingMethod',"BjerksundStensland")
outPricer = 
  BjerksundStensland with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: [103 105]
    DividendValue: [0.0250 0.0280]
     DividendType: "continuous"

Price Spread Instrument

Use price to compute the price and sensitivities for the Spread instrument.

[Price, outPR] = price(outPricer,SpreadOpt,["all"])
Price = 
95.9884
outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: []

outPR.Results
ans=1×7 table
    Price           Delta                    Gamma                    Lambda                 Vega          Theta      Rho  
    ______    __________________    _______________________    ____________________    ________________    _____    _______

    95.988    -0.8916    0.90457    0.0021316    0.00048175    -0.95673     0.97064    13.582    1.5785    3.135    -278.49

This example shows the workflow to price multiple Spread instruments with a European option when using a BlackScholes model and a BjerksundStensland pricing method.

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object for three Spread instruments.

SpreadOpt = fininstrument("Spread",'Strike',[105 ; 120 ; 150],'ExerciseDate',datetime([2021,9,15 ; 2021,10,15 ; 2021,11,15]),'OptionType',"put",'ExerciseStyle',"european",'Name',"spread_option")
SpreadOpt=3×1 Spread array with properties:
    OptionType
    Strike
    ExerciseStyle
    ExerciseDate
    Name

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes",'Volatility',[0.2,0.1])
BlackScholesModel = 
  BlackScholes with properties:

     Volatility: [0.2000 0.1000]
    Correlation: [2x2 double]

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create BjerksundStensland Pricer Object

Use finpricer to create a BjerksundStensland pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',[103 160],'DividendValue',[0.025 , 0.028],'PricingMethod',"BjerksundStensland")
outPricer = 
  BjerksundStensland with properties:

    DiscountCurve: [1x1 ratecurve]
            Model: [1x1 finmodel.BlackScholes]
        SpotPrice: [103 160]
    DividendValue: [0.0250 0.0280]
     DividendType: "continuous"

Price Spread Instruments

Use price to compute the prices and sensitivities for the Spread instruments.

[Price, outPR] = price(outPricer,SpreadOpt,["all"])
Price = 3×1

  146.1732
  159.1989
  185.5513

outPR=3×1 priceresult array with properties:
    Results
    PricerData

outPR.Results
ans=1×7 table
    Price            Delta                     Gamma                     Lambda                 Vega           Theta       Rho  
    ______    ____________________    ________________________    ____________________    _________________    ______    _______

    146.17    -0.91985     0.91683    0.00057696    7.9581e-05    -0.64817     0.64604    3.6848    0.60671    4.9043    -282.63

ans=1×7 table
    Price           Delta                     Gamma                     Lambda                 Vega           Theta       Rho  
    _____    ____________________    ________________________    ____________________    _________________    ______    _______

    159.2    -0.92024     0.91557    0.00042064    5.4001e-05    -0.59539     0.59237    2.7723    0.40502    5.3984    -331.26

ans=1×7 table
    Price            Delta                    Gamma                    Lambda                 Vega           Theta       Rho  
    ______    ____________________    ______________________    ____________________    _________________    ______    _______

    185.55    -0.92123     0.91439    0.000216    1.9895e-05    -0.51138     0.50758    1.4478    0.16988    6.3711    -424.75

This example shows the workflow to price a commodity Spread instrument when you use a BlackScholes model and Kirk and BjerksundStensland analytic pricing methods.

Understanding Crack Spread Options

In the petroleum industry, refiners are concerned about the difference between their input costs (crude oil) and output prices (refined products — gasoline, heating oil, diesel fuel, and so on). The differential between these two underlying commodities is referred to as a crack spread. It represents the profit margin between crude oil and the refined products.

A spread option is an option on the spread where the holder has the right, but not the obligation, to enter into a spot or forward spread contract. Crack spread options are often used to protect against declines in the crack spread or to monetize volatility or price expectations on the spread.

Define the Commodity

Assume that current gasoline prices are strong, and you want to model a crack spread option strategy to protect the gasoline margin. A crack spread option strategy is used to maintain profits for the following season. The WTI crude oil futures are at $93.20 per barrel and RBOB gasoline futures contract are at $2.85 per gallon.

Strike = 20;
Rate = 0.05;

Settle = datetime(2020,1,1);
Maturity = datemnth(Settle,3);

% Price and volatility of RBOB gasoline
PriceGallon1 = 2.85;          % Dollars per gallon
Price1 = PriceGallon1 * 42;   % Dollars per barrel
Vol1 = 0.29;

% Price and volatility of WTI crude oil
Price2 = 93.20;         % Dollars per barrel
Vol2 = 0.36;

% Correlation between the prices of the commodities
Corr = 0.42;

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object.

SpreadOpt = fininstrument("Spread", 'ExerciseDate', Maturity, 'Strike', Strike,'ExerciseStyle',"european",'Name',"spread_instrument")
SpreadOpt = 
  Spread with properties:

       OptionType: "call"
           Strike: 20
    ExerciseStyle: "european"
     ExerciseDate: 01-Apr-2020
             Name: "spread_instrument"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

BlackScholesModel = finmodel("BlackScholes", 'Volatility', [Vol1,Vol2], 'Correlation', [1 Corr; Corr 1]);

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

ZeroCurve = ratecurve('zero', Settle, Maturity, Rate, 'Basis', 1);

Create BjerksundStensland Pricer Object

Use finpricer to create a BjerksundStensland pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

BJSPricer = finpricer("Analytic", 'Model', BlackScholesModel, 'SpotPrice', [Price1 , Price2], 'DiscountCurve', ZeroCurve,'PricingMethod', "BjerksundStensland");

Create Kirk Pricer Object

Use finpricer to create a Kirk pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

KirkPricer = finpricer("Analytic", 'Model', BlackScholesModel,'SpotPrice', [Price1 , Price2], 'DiscountCurve', ZeroCurve,'PricingMethod', "Kirk");

Price Spread Instrument Using BjerksundStensland and Kirk Analytic Pricing Methods

Use price to compute the price and sensitivities for the commodity Spread instrument.

[PriceKirk, outPR_Kirk] = price(KirkPricer, SpreadOpt, "all");
[PriceBJS,  outPR_BJS]  = price(BJSPricer,  SpreadOpt, "all");

[outPR_Kirk.Results; outPR_BJS.Results]
ans=2×7 table
    Price           Delta                  Gamma                 Lambda                Vega           Theta      Rho  
    _____    ___________________    ____________________    _________________    ________________    _______    ______

    11.19    0.67224    -0.60665    0.019081    0.021662    7.1907    -6.4891    11.299    9.8869    -14.539    3.1841
     11.2    0.67371    -0.60816    0.018992    0.021572    7.2003    -6.4997    11.198    9.9878    -14.555    3.1906

This example shows the workflow to price a Spread instrument with an American option when using a BlackScholes model and an AssetMonteCarlo pricing method.

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object.

SpreadOpt = fininstrument("Spread",'Strike',100,'ExerciseDate',datetime(2021,9,15),'OptionType',"put",'ExerciseStyle',"American",'Name',"spread_option")
SpreadOpt = 
  Spread with properties:

       OptionType: "put"
           Strike: 100
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2021
             Name: "spread_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

Corr = 0.42;
BlackScholesModel = finmodel("BlackScholes","Volatility",[0.3,0.1],"Correlation", [1 Corr;Corr 1])
BlackScholesModel = 
  BlackScholes with properties:

     Volatility: [0.3000 0.1000]
    Correlation: [2x2 double]

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo","DiscountCurve",myRC,"Model",BlackScholesModel,'SpotPrice',[100,95],'simulationDates',datetime(2021,9,15),'dividendType',["continuous","continuous"],'dividendvalue',[0,0.01])
outPricer = 
  GBMMonteCarlo with properties:

           DiscountCurve: [1x1 ratecurve]
               SpotPrice: [100 95]
         SimulationDates: 15-Sep-2021
               NumTrials: 1000
           RandomNumbers: []
                   Model: [1x1 finmodel.BlackScholes]
            DividendType: ["continuous"    "continuous"]
           DividendValue: [0 0.0100]
        MonteCarloMethod: "standard"
    BrownianMotionMethod: "standard"

Price Spread Instrument

Use price to compute the price and sensitivities for the Spread instrument.

[Price, outPR] = price(outPricer,SpreadOpt,["all"])
Price = 
95
outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results
ans=1×7 table
    Price     Delta           Gamma               Lambda          Rho    Theta     Vega 
    _____    ________    _______________    __________________    ___    _____    ______

     95      -1     1    0    3.1492e-14    -1.0526          1     0       0      0    0

This example shows the workflow to price a Spread instrument with an American option when using a BlackScholes model and an AssetMonteCarlo pricing method with quasi-Monte Carlo simulation.

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object.

SpreadOpt = fininstrument("Spread",'Strike',100,'ExerciseDate',datetime(2021,9,15),'OptionType',"put",'ExerciseStyle',"American",'Name',"spread_option")
SpreadOpt = 
  Spread with properties:

       OptionType: "put"
           Strike: 100
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2021
             Name: "spread_option"

Create BlackScholes Model Object

Use finmodel to create a BlackScholes model object.

Corr = 0.42;
BlackScholesModel = finmodel("BlackScholes","Volatility",[0.3,0.1],"Correlation", [1 Corr;Corr 1])
BlackScholesModel = 
  BlackScholes with properties:

     Volatility: [0.3000 0.1000]
    Correlation: [2x2 double]

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value argument and use the name-value arguments for MonteCarloMethod and BrownianMotionMethod.

outPricer = finpricer("AssetMonteCarlo","DiscountCurve",myRC,"Model",BlackScholesModel,'SpotPrice',[100,95],'simulationDates',datetime(2021,9,15),'dividendType',["continuous","continuous"],'dividendvalue',[0,0.01],'NumTrials',1e3, ...
                     'MonteCarloMethod',"quasi",'BrownianMotionMethod',"brownian-bridge")
outPricer = 
  GBMMonteCarlo with properties:

           DiscountCurve: [1x1 ratecurve]
               SpotPrice: [100 95]
         SimulationDates: 15-Sep-2021
               NumTrials: 1000
           RandomNumbers: []
                   Model: [1x1 finmodel.BlackScholes]
            DividendType: ["continuous"    "continuous"]
           DividendValue: [0 0.0100]
        MonteCarloMethod: "quasi"
    BrownianMotionMethod: "brownian-bridge"

Price Spread Instrument

Use price to compute the price and sensitivities for the Spread instrument.

[Price, outPR] = price(outPricer,SpreadOpt,"all")
Price = 
95
outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results
ans=1×7 table
    Price     Delta           Gamma               Lambda          Rho    Theta     Vega 
    _____    ________    _______________    __________________    ___    _____    ______

     95      -1     1    0    3.1492e-14    -1.0526          1     0       0      0    0

This example shows the workflow to price a Spread instrument with an American option when using a Bachelier model and an AssetMonteCarlo pricing method.

Create Spread Instrument Object

Use fininstrument to create a Spread instrument object.

SpreadOpt = fininstrument("Spread",'Strike',100,'ExerciseDate',datetime(2021,9,15),'OptionType',"put",'ExerciseStyle',"American",'Name',"spread_option")
SpreadOpt = 
  Spread with properties:

       OptionType: "put"
           Strike: 100
    ExerciseStyle: "american"
     ExerciseDate: 15-Sep-2021
             Name: "spread_option"

Create Bachelier Model Object

Use finmodel to create a Bachelier model object.

Corr = 0.42;
BachelierModel = finmodel("BlackScholes","Volatility",[0.3,0.1],"Correlation", [1 Corr;Corr 1])
BachelierModel = 
  BlackScholes with properties:

     Volatility: [0.3000 0.1000]
    Correlation: [2x2 double]

Create ratecurve Object

Create a flat ratecurve object using ratecurve.

Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 12
                Dates: 15-Sep-2023
                Rates: 0.0350
               Settle: 15-Sep-2018
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create AssetMonteCarlo Pricer Object

Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("AssetMonteCarlo","DiscountCurve",myRC,"Model",BachelierModel,'SpotPrice',[100,95],'simulationDates',datetime(2021,9,15),'dividendType',["continuous","continuous"],'dividendvalue',[0,0.01])
outPricer = 
  GBMMonteCarlo with properties:

           DiscountCurve: [1x1 ratecurve]
               SpotPrice: [100 95]
         SimulationDates: 15-Sep-2021
               NumTrials: 1000
           RandomNumbers: []
                   Model: [1x1 finmodel.BlackScholes]
            DividendType: ["continuous"    "continuous"]
           DividendValue: [0 0.0100]
        MonteCarloMethod: "standard"
    BrownianMotionMethod: "standard"

Price Spread Instrument

Use price to compute the price and sensitivities for the Spread instrument.

[Price, outPR] = price(outPricer,SpreadOpt,["all"])
Price = 
95
outPR = 
  priceresult with properties:

       Results: [1x7 table]
    PricerData: [1x1 struct]

outPR.Results
ans=1×7 table
    Price     Delta           Gamma               Lambda          Rho    Theta     Vega 
    _____    ________    _______________    __________________    ___    _____    ______

     95      -1     1    0    3.1492e-14    -1.0526          1     0       0      0    0

More About

expand all

Version History

Introduced in R2020a

expand all