resize3dLayer
Description
A 3-D resize layer resizes 3-D input by a scale factor, to a specified height, width, and depth, or to the size of a reference input feature map. Use of this layer requires Deep Learning Toolbox™.
Creation
Syntax
Description
layer = resize3dLayer('Scale',scale)
creates a 3-D resize layer
and sets the Scale property as the
scale factor specified by scale
.
layer = resize3dLayer('OutputSize',outputSize)
creates a 3-D
resize layer and sets the OutputSize property
with the height, width, and depth specified by outputSize
.
layer = resize3dLayer('EnableReferenceInput',tf)
creates a 3-D
resize layer and sets the EnableReferenceInput
property with the boolean specified by tf
. When you specify the value
as true
, the layer adds an additional input that accepts a reference
feature map and resizes the input to the size of the reference feature map.
layer = resize3dLayer(___,
also sets the optional Method, GeometricTransformMode,
NearestRoundingMode,
and Name properties using name-value pair
arguments. You can specify multiple name-value pair arguments. Enclose each property name
in single quotes.Name,Value
)
Example: layer = resize3dLayer('OutputSize',[128 128
36],'Method','trilinear')
creates a 3-D resize layer that resizes input to
128-by-128-by-36 pixels using trilinear interpolation
Properties
Examples
Version History
Introduced in R2020bSee Also
resize2dLayer
| averagePooling3dLayer
(Deep Learning Toolbox) | transposedConv3dLayer
(Deep Learning Toolbox) | dlresize
| importONNXLayers
(Deep Learning Toolbox)
Topics
- Deep Learning in MATLAB (Deep Learning Toolbox)
- Specify Layers of Convolutional Neural Network (Deep Learning Toolbox)
- List of Deep Learning Layers (Deep Learning Toolbox)