trendChart
Description
Use the trendChart to plot a trend analysis chart with specified
        x- and y-axes from an adeDataReader
      object or a MATLAB® table.
You can plot a trend chart from multiple data sources (such as Cadence® interactive runs) for a single metric.
Creation
Description
Input Arguments
Object containing the trend chart data, specified as an
                adeDataReader object.
Data Types: char
Name-Value Arguments
Specify optional pairs of arguments as
      Name1=Value1,...,NameN=ValueN, where Name is
      the argument name and Value is the corresponding value.
      Name-value arguments must appear after other arguments, but the order of the
      pairs does not matter.
    
Example: fig = trendChart(obj,Yaxis='Iload') plots the
            Iloadon the y-axis of a trend chart from the
            adeDataReader object and returns the object handle
            fig.
Fields to be plotted on the x-axis of the trend chart, specified as a cell array of strings.
Data Types: char
Field to be plotted on the y-axis of the trend chart, specified as a string.
Note
You must provide the Yaxis argument.
Data Types: char
Legends for trend chart, specified as a cell array of strings.
Data Types: char
Handle of figure axes of the trend chart, specified as object handle.
Data Types: char
Output Arguments
Trend chart object containing the axes information, legends, and trend chart plot.
Data Types: char
Examples
Unzip the ldo_test_Interactive.244.zip file attached with this example. Load the ldo_test_Interactive.244.mat file containing the adeInfo object data.
unzip('ldo_test_Interactive.244.zip'); data = adeDataReader('ldo_test_Interactive.244.mat');
Find the variables for trend chart analysis.
fields = data.TrendChartFields;
Plot trend chart of Phase Margin against cfb, Iload, and temperature.
fig = trendChart(data,Yaxis='Phase Margin',Xaxis={fields{2},fields{1},fields{4}})
fig = 
  trendChart with properties:
           InputFile: [1×1 adeDataReader]
               Xaxis: {'cfb'  'Iload'  'temperature'}
               Yaxis: {'Phase Margin'}
              Legend: {}
             FigAxes: [1×1 Axes]
    TrendChartFields: {12×1 cell}

Update the plot to observe the trend of gain margin instead of phase margin against the same variables.
fig.Yaxis = "Gain Margin"
fig = 
  trendChart with properties:
           InputFile: [1×1 adeDataReader]
               Xaxis: {'cfb'  'Iload'  'temperature'}
               Yaxis: {'Gain Margin'}
              Legend: {}
             FigAxes: [1×1 Axes]
    TrendChartFields: {12×1 cell}

Use the corModelSpec as a legend and update the plot.
fig.Legend = fields{3}
fig = 
  trendChart with properties:
           InputFile: [1×1 adeDataReader]
               Xaxis: {'cfb'  'Iload'  'temperature'}
               Yaxis: {'Gain Margin'}
              Legend: {'corModelSpec'}
             FigAxes: [1×1 Axes]
    TrendChartFields: {12×1 cell}

If you accidentally close the plot window, you can bring it back.
fig.show

Create a MATLAB® table T from patient information.
load patients T = table(Age,Height,Weight,Smoker,... Systolic,Diastolic,SelfAssessedHealthStatus)
T =
  100×7 table
    Age    Height    Weight    Smoker    Systolic    Diastolic    SelfAssessedHealthStatus
    ___    ______    ______    ______    ________    _________    ________________________
    38       71       176      true        124          93             {'Excellent'}      
    43       69       163      false       109          77             {'Fair'     }      
    38       64       131      false       125          83             {'Good'     }      
    40       67       133      false       117          75             {'Fair'     }      
    49       64       119      false       122          80             {'Good'     }      
    46       68       142      false       121          70             {'Good'     }      
    33       64       142      true        130          88             {'Good'     }      
    40       68       180      false       115          82             {'Good'     }      
    28       68       183      false       115          78             {'Excellent'}      
    31       66       132      false       118          86             {'Excellent'}      
    45       68       128      false       114          77             {'Excellent'}      
    42       66       137      false       115          68             {'Poor'     }      
    25       71       174      false       127          74             {'Poor'     }      
    39       72       202      true        130          95             {'Excellent'}      
    36       65       129      false       114          79             {'Good'     }      
    48       71       181      true        130          92             {'Good'     }      
    32       69       191      true        124          95             {'Excellent'}      
    27       69       131      true        123          79             {'Fair'     }      
    37       70       179      false       119          77             {'Good'     }      
    50       68       172      false       125          76             {'Good'     }      
    48       65       133      false       121          75             {'Excellent'}      
    39       64       117      false       123          79             {'Fair'     }      
    41       62       137      false       114          88             {'Fair'     }      
    44       66       146      true        128          90             {'Fair'     }      
    28       65       123      true        129          96             {'Good'     }      
    25       70       189      false       114          77             {'Poor'     }      
    39       63       143      false       113          80             {'Excellent'}      
    25       63       114      false       125          76             {'Good'     }      
    36       68       166      false       120          83             {'Poor'     }      
    30       67       186      true        127          89             {'Excellent'}      
    45       70       126      true        134          92             {'Excellent'}      
    40       66       137      false       121          83             {'Poor'     }      
    25       64       138      false       115          80             {'Excellent'}      
    47       70       187      false       127          84             {'Excellent'}      
    44       71       193      false       121          92             {'Good'     }      
    48       66       137      false       127          83             {'Excellent'}      
    44       71       192      true        136          90             {'Good'     }      
    35       66       118      false       117          85             {'Fair'     }      
    33       66       180      true        124          90             {'Good'     }      
    38       63       128      false       120          74             {'Good'     }      
    39       71       164      true        128          92             {'Fair'     }      
    44       69       183      false       116          80             {'Excellent'}      
    44       70       169      true        132          89             {'Good'     }      
    37       70       194      true        137          96             {'Excellent'}      
    45       67       172      false       117          89             {'Good'     }      
    37       65       135      false       116          77             {'Fair'     }      
    30       68       182      false       119          81             {'Poor'     }      
    39       62       121      false       123          76             {'Good'     }      
    42       70       158      false       116          83             {'Excellent'}      
    42       67       179      true        124          78             {'Good'     }      
    49       68       170      true        129          95             {'Poor'     }      
    44       62       136      true        130          91             {'Good'     }      
    43       64       135      true        132          91             {'Poor'     }      
    47       66       147      false       117          86             {'Excellent'}      
    50       72       186      true        129          89             {'Excellent'}      
    38       63       124      false       118          79             {'Excellent'}      
    41       66       134      false       120          74             {'Good'     }      
    45       70       170      true        138          82             {'Good'     }      
    36       71       180      false       117          76             {'Good'     }      
    38       68       130      false       113          81             {'Good'     }      
    29       63       130      false       122          77             {'Excellent'}      
    28       65       127      false       115          73             {'Good'     }      
    30       67       141      false       120          85             {'Excellent'}      
    28       66       111      false       117          76             {'Good'     }      
    29       68       134      false       123          80             {'Excellent'}      
    36       71       189      false       123          80             {'Good'     }      
    45       70       137      false       119          79             {'Excellent'}      
    32       60       136      false       110          82             {'Excellent'}      
    31       64       130      false       121          79             {'Excellent'}      
    48       64       137      true        138          82             {'Excellent'}      
    25       66       186      false       125          75             {'Good'     }      
    40       64       127      true        122          91             {'Fair'     }      
    39       72       176      false       120          74             {'Excellent'}      
    41       65       127      false       117          78             {'Poor'     }      
    33       67       115      true        125          85             {'Excellent'}      
    31       72       178      true        124          84             {'Fair'     }      
    35       64       131      false       121          75             {'Fair'     }      
    32       68       183      false       118          78             {'Poor'     }      
    42       66       194      false       120          81             {'Excellent'}      
    48       64       126      false       118          79             {'Good'     }      
    34       68       186      false       118          85             {'Good'     }      
    39       69       188      false       122          79             {'Excellent'}      
    28       69       189      true        134          82             {'Good'     }      
    29       64       120      false       131          80             {'Good'     }      
    32       63       132      false       113          80             {'Excellent'}      
    39       68       182      true        125          92             {'Good'     }      
    37       65       120      true        135          92             {'Poor'     }      
    49       63       123      true        128          96             {'Good'     }      
    31       66       141      true        123          87             {'Good'     }      
    37       65       129      false       122          81             {'Good'     }      
    38       68       184      true        138          90             {'Excellent'}      
    45       71       181      false       124          77             {'Excellent'}      
    30       70       124      false       130          91             {'Fair'     }      
    48       71       174      false       123          79             {'Good'     }      
    48       66       134      false       129          73             {'Excellent'}      
    25       69       171      true        128          99             {'Good'     }      
    44       69       188      true        124          92             {'Good'     }      
    49       70       186      false       119          74             {'Fair'     }      
    45       68       172      true        136          93             {'Good'     }      
    48       66       177      false       114          86             {'Fair'     }      
Plot a trend chart from the table. Plot the age, height, and self-assessed health status of the patient along the x-axis and the systolic and diastolic blood pressure along the y-axis.
fig=trendChart(T,Yaxis={'Systolic','Diastolic'},...
    Xaxis={'SelfAssessedHealthStatus','Age','Weight'})
fig = 
  trendChart with properties:
           InputFile: [100×7 table]
               Xaxis: {'SelfAssessedHealthStatus'  'Age'  'Weight'}
               Yaxis: {'Systolic'  'Diastolic'}
              Legend: {}
             FigAxes: [1×1 Axes]
    TrendChartFields: {1×7 cell}

Version History
Introduced in R2024bYou can now plot trend chart from a MATLAB table. For more information, see Plot Trend Chart from MATLAB Table.
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)