Main Content

gammaml

Calculate load reflection coefficient of two-port network

Syntax

``coefficient = gammaml(s_params)``
``coefficient = gammaml(hs)``

Description

example

````coefficient = gammaml(s_params)` calculates the load reflection coefficient of a two-port network required for simultaneous conjugate match.```

example

````coefficient = gammaml(hs)` calculates the load reflection coefficient of the two-port network represented by the S-parameter object `hs`.```

Examples

collapse all

Calculate the load reflection coefficient using network data from a file

```ckt = read(rfckt.amplifier,'default.s2p'); s_params = ckt.NetworkData.Data; coefficient = gammaml(s_params);```

Define S-parameters object specified from a file.

`s_params = sparameters('default.s2p');`

Calculate the load reflection coefficient using the `gammaml` function.

`coefficient = gammaml(s_params)`
```coefficient = 191×1 complex -0.0741 + 0.3216i -0.0751 + 0.3292i -0.0763 + 0.3365i -0.0776 + 0.3435i -0.0791 + 0.3502i -0.0807 + 0.3564i -0.0825 + 0.3619i -0.0843 + 0.3668i -0.0862 + 0.3709i -0.0882 + 0.3741i ⋮ ```

Input Arguments

collapse all

Two-port S-parameters, specified as a complex 2-by-2-by-M array. M is the number of two-port S-parameters.

Data Types: `double`

Two-port network, specified as an S-parameter object.

Data Types: `function_handle`

Output Arguments

collapse all

Load reflection coefficient, returned as a M element complex vector.

Algorithms

The function calculates `coefficient` using the equation

`${\Gamma }_{ML}=\frac{{B}_{2}±\sqrt{{B}_{2}{}^{2}-4|{C}_{2}{}^{2}|}}{2{C}_{2}}$`

where

`$\begin{array}{c}{B}_{2}=1-|{S}_{11}{}^{2}|+|{S}_{22}{}^{2}|-|{\Delta }^{2}|\\ {C}_{2}={S}_{22}-\Delta \cdot {S}_{11}^{*}\\ \Delta ={S}_{11}{S}_{22}-{S}_{12}{S}_{21}\end{array}$`

Version History

Introduced before R2006a