Main Content

createFeatureData

Create feature table or matrix and response vectors

    Description

    example

    ftdata = createFeatureData(lss) creates a table of feature data ftdata with features corresponding to all the attribute and region-of-interest (ROI) feature labels in the input labeled signal set.

    example

    [ftdata,respdata] = createFeatureData(lss,Name=Value) returns a table of responses respdata where each variable corresponds to the data for the specified response label. You can specify a list of label names that the function adds as responses to respdata and other optional inputs as name-value arguments. For example, Responses="Species" specifies Species as a response label.

    Note

    The label data for all specified label names must be vertically and horizontally concatenable.

    Examples

    collapse all

    Create a set of label definitions.

    • Define three numeric attribute feature labels that correspond to mean frequency, band power, and peak amplitude.

    • Define two numeric region-of-interest (ROI) feature labels that correspond to mean and signal-to-noise ratio (SNR).

    • Define one categorical attribute label that has these categories: A, B, and C.

    Create a labeled signal set that contains all six label definitions.

    ld1 = signalLabelDefinition("MeanFrequency",LabelType="attributeFeature",LabelDataType="numeric");
    ld2 = signalLabelDefinition("BandPower",LabelType="attributeFeature",LabelDataType="numeric");
    ld3 = signalLabelDefinition("PeakAmplitude",LabelType="attributeFeature",LabelDataType="numeric");
    
    ld4 = signalLabelDefinition("Mean",LabelType="roiFeature",LabelDataType="numeric", ...
          FrameSize=500,FrameOverlapLength=250);
    ld5 = signalLabelDefinition("SNR",LabelType="roiFeature",LabelDataType="numeric", ...
          FrameSize=500,FrameOverlapLength=250);
    
    catValues = ["A" "B" "C"];
    ld6 = signalLabelDefinition("Class",LabelType="attribute",LabelDataType="categorical", ...
          Categories=catValues);
    
    lss = labeledSignalSet([],[ld1,ld2,ld3,ld4,ld5,ld6]);

    Create a signalFrequencyFeatureExtractor object to extract the mean frequency, band power, and peak amplitude values across an entire signal. Create a signalTimeFeatureExtractor object to extract the mean and SNR values from signal frames that are 500 samples long and have 250 samples of overlap. Set the output format of each extractor object to a table.

    H = signalFrequencyFeatureExtractor();
    H.FeatureFormat = "table";
    H.MeanFrequency = true;
    H.BandPower = true;
    H.PeakAmplitude= true;
    H.setExtractorParameters("PeakAmplitude",MaxNumExtrema=5)
    
    G = signalTimeFeatureExtractor();
    G.FeatureFormat = "table";
    G.FrameSize = 500;
    G.FrameOverlapLength = 250;
    G.Mean = true;
    G.SNR = true;

    Create a signal, x, made up of several sinusoids with varying frequencies. For ten iterations, add random noise to x to generate xn, and add this new signal as a member to lss. Extract the specified features from xn and set the label values in the labeled signal set equal to the values of the extracted features. Display the labels contained in the labeled signal set.

    t = (1:1000)'/1e3;
    x = sin(2*pi*10*t) + sin(2*pi*100*t) + sin(2*pi*200*t) + sin(2*pi*350*t) + sin(2*pi*450*t);
    
    for idx = 1:10
         
        xn = x + randn(size(t));
        p = extract(H,xn);
        
        addMembers(lss,xn);
        
        setLabelValue(lss,idx,"MeanFrequency",p.MeanFrequency);
        setLabelValue(lss,idx,"BandPower",p.BandPower);
        setLabelValue(lss,idx,"PeakAmplitude",p.PeakAmplitude);
        
        q = extract(G,xn);
        rois = q{:,[1,2]};
        setLabelValue(lss,idx,"Mean",rois,q.Mean);
        setLabelValue(lss,idx,"SNR",rois,q.SNR);
    
        setLabelValue(lss,idx,"Class",catValues(randi(3,[1 1])));
    end
     
    LBLS = lss.Labels
    LBLS=10×6 table
                      MeanFrequency    BandPower                    PeakAmplitude                      Mean            SNR        Class
                      _____________    __________    ___________________________________________    ___________    ___________    _____
    
        Member{1}      {[1.4789]}      {[3.4261]}    {[ 9.0290 11.1191 11.4532 12.0216 13.2064]}    {3x2 table}    {3x2 table}      C  
        Member{2}      {[1.4040]}      {[3.4643]}    {[ 11.3509 9.5855 12.0983 11.9682 12.5628]}    {3x2 table}    {3x2 table}      C  
        Member{3}      {[1.4642]}      {[3.5901]}    {[10.9591 10.3477 14.7581 11.1874 12.6932]}    {3x2 table}    {3x2 table}      A  
        Member{4}      {[1.3684]}      {[3.5572]}    {[ 12.9701 11.7092 13.0650 9.5547 12.5720]}    {3x2 table}    {3x2 table}      B  
        Member{5}      {[1.4672]}      {[3.4403]}    {[ 10.7361 9.3758 13.8124 10.7749 13.3737]}    {3x2 table}    {3x2 table}      A  
        Member{6}      {[1.4241]}      {[3.5225]}    {[10.3302 11.5979 11.6696 11.2745 12.2777]}    {3x2 table}    {3x2 table}      C  
        Member{7}      {[1.4070]}      {[3.3863]}    {[ 10.5294 11.4855 12.5187 9.8425 12.6257]}    {3x2 table}    {3x2 table}      A  
        Member{8}      {[1.4529]}      {[3.4818]}    {[ 9.8225 10.6672 13.3820 10.7357 12.6096]}    {3x2 table}    {3x2 table}      B  
        Member{9}      {[1.4181]}      {[3.5552]}    {[12.4350 11.5933 12.0069 11.1148 12.9654]}    {3x2 table}    {3x2 table}      B  
        Member{10}     {[1.4198]}      {[3.5516]}    {[11.3011 10.5433 13.6415 11.5888 13.1569]}    {3x2 table}    {3x2 table}      C  
    
    

    Create a table that contains feature data corresponding to all feature labels in lss. The Class data is not included in the table because Class is not a feature label.

    FTs = createFeatureData(lss,ConvertFeaturesToRows=true)
    FTs=10×5 table
        MeanFrequency    BandPower                    PeakAmplitude                                     Mean                                  SNR             
        _____________    _________    ______________________________________________    _____________________________________    _____________________________
    
           1.4789         3.4261       9.029    11.119    11.453    12.022    13.206    -0.021921      -0.04995     -0.043343    -4.7744    -6.8315    -5.7233
            1.404         3.4643      11.351    9.5855    12.098    11.968    12.563     0.058634      0.037199      0.014408    -6.6994    -4.8069     -6.049
           1.4642         3.5901      10.959    10.348    14.758    11.187    12.693     0.023716      0.022439      0.052243    -4.4364    -5.5243    -5.9047
           1.3684         3.5572       12.97    11.709    13.065    9.5547    12.572      0.04709       0.04225     0.0099387    -5.2615    -5.9997    -4.9845
           1.4672         3.4403      10.736    9.3758    13.812    10.775    13.374     0.014723      0.023537      0.044529    -4.5713    -5.9291    -5.9603
           1.4241         3.5225       10.33    11.598     11.67    11.274    12.278    -0.032001     -0.050336     -0.081017    -5.1732    -5.8918    -6.9184
            1.407         3.3863      10.529    11.486    12.519    9.8425    12.626     0.016776      0.029752     -0.016017    -6.5449    -3.5879     -5.754
           1.4529         3.4818      9.8225    10.667    13.382    10.736     12.61    -0.003218     0.0095321      0.017105    -5.8408    -6.5075    -6.0452
           1.4181         3.5552      12.435    11.593    12.007    11.115    12.965    -0.092008     -0.055926     -0.037221    -6.9075    -6.6543    -5.6822
           1.4198         3.5516      11.301    10.543    13.641    11.589    13.157     0.066601      0.011827    -0.0096364    -6.3197    -5.7298    -7.0011
    
    

    Create another table containing feature data that corresponds only to attribute feature labels. Use the getLabelNames function to specify label names corresponding to attribute features. Specify Class as a response label to obtain a second output table that contains the category each member belongs to.

    [attFTs,R] = createFeatureData(lss,Features=getLabelNames(lss,LabelType="attributeFeature"), ...
                 ConvertFeaturesToRows=true,Responses="Class")
    attFTs=10×3 table
        MeanFrequency    BandPower                    PeakAmplitude                 
        _____________    _________    ______________________________________________
    
           1.4789         3.4261       9.029    11.119    11.453    12.022    13.206
            1.404         3.4643      11.351    9.5855    12.098    11.968    12.563
           1.4642         3.5901      10.959    10.348    14.758    11.187    12.693
           1.3684         3.5572       12.97    11.709    13.065    9.5547    12.572
           1.4672         3.4403      10.736    9.3758    13.812    10.775    13.374
           1.4241         3.5225       10.33    11.598     11.67    11.274    12.278
            1.407         3.3863      10.529    11.486    12.519    9.8425    12.626
           1.4529         3.4818      9.8225    10.667    13.382    10.736     12.61
           1.4181         3.5552      12.435    11.593    12.007    11.115    12.965
           1.4198         3.5516      11.301    10.543    13.641    11.589    13.157
    
    
    R=10×1 table
        Class
        _____
    
          C  
          C  
          A  
          B  
          A  
          C  
          A  
          B  
          B  
          C  
    
    

    You can use the getLabelIndices function to specify indices for labels you want to include in the feature table. Create a table containing feature data that corresponds only to ROI feature labels. Use the ExpandResponseLabels argument to repeat response labels for each member.

    [roiFTs,R] = createFeatureData(lss,Features=getLabelIndices(lss,LabelType="roiFeature"), ...
                 Responses="Class",ExpandResponseLabels=true)
    roiFTs=30×2 table
          Mean         SNR  
        _________    _______
    
        -0.021921    -4.7744
         -0.04995    -6.8315
        -0.043343    -5.7233
         0.058634    -6.6994
         0.037199    -4.8069
         0.014408     -6.049
         0.023716    -4.4364
         0.022439    -5.5243
         0.052243    -5.9047
          0.04709    -5.2615
          0.04225    -5.9997
        0.0099387    -4.9845
         0.014723    -4.5713
         0.023537    -5.9291
         0.044529    -5.9603
        -0.032001    -5.1732
          ⋮
    
    
    R=30×1 table
        Class
        _____
    
          C  
          C  
          C  
          C  
          C  
          C  
          A  
          A  
          A  
          B  
          B  
          B  
          A  
          A  
          A  
          C  
          ⋮
    
    

    Load a labeled signal set containing recordings of whale songs.

    load whales
    lss
    lss = 
      labeledSignalSet with properties:
    
                 Source: {2x1 cell}
             NumMembers: 2
        TimeInformation: "sampleRate"
             SampleRate: 4000
                 Labels: [2x3 table]
            Description: "Characterize wave song regions"
    
     Use labelDefinitionsHierarchy to see a list of labels and sublabels.
     Use setLabelValue to add data to the set.
    
    

    Retrieve and plot the signals contained in lss. Each whale song consists of four sounds.

    for k = 1:lss.NumMembers
        [s,info] = getSignal(lss,k);
        fs = lss.SampleRate;
        t = 0:length(s)-1/fs;
        subplot(2,1,k)
        plot(t,s)
    end

    Figure contains 2 axes objects. Axes object 1 contains an object of type line. Axes object 2 contains an object of type line.

    Add numeric region-of-interest (ROI) feature label definitions to lss that you will use to specify the shape factor and peak values of each signal. Specify a frame size equal to 25% of the signal length, so that each region corresponds to a different sound.

    Create a signalTimeFeatureExtractor object to extract the shape factor and peak value of each ROI. Set the roiFeature label values in the labeled signal set to the values of the extracted features.

    sld1 = signalLabelDefinition("ShapeROI",LabelType="roiFeature", ...
          LabelDataType="numeric",FrameSize=round(0.25*length(s))-1);
    
    sld2 = signalLabelDefinition("PeakROI",LabelType="roiFeature", ...
          LabelDataType="numeric",FrameSize=round(0.25*length(s))-1);
    
    addLabelDefinitions(lss,[sld1 sld2]);
    
    sFE = signalTimeFeatureExtractor(SampleRate=fs,FrameSize=round(0.25*length(s))-1);
    sFE.FeatureFormat = "table";
    sFE.ShapeFactor = true;
    sFE.PeakValue = true;
    
    for i = 1:lss.NumMembers
        sig = getSignal(lss,i);
        fts = extract(sFE,sig);
    
        setLabelValue(lss,i,"ShapeROI",[fts.FrameStartTime fts.FrameEndTime],fts.ShapeFactor);
        setLabelValue(lss,i,"PeakROI",[fts.FrameStartTime fts.FrameEndTime],fts.PeakValue);
    end

    Use the getLabelDefinitions function to obtain the label names corresponding to roiFeature labels in lss. Create a matrix of data that corresponds to the ROI feature labels in the labeled signal set, where each column is a feature.

    lbldefs = getLabelDefinitions(lss,LabelType="roiFeature");
    lbldefs(:).Name
    ans = 
    "ShapeROI"
    
    ans = 
    "PeakROI"
    
    ftdata = createFeatureData(lss,Features=[lbldefs(1).Name lbldefs(2).Name],OutputFormat="matrix")
    ftdata = 8×2
    
        1.6908    0.2694
        1.7483    0.2850
        1.6517    0.2421
        1.5930    0.2264
        1.4750    0.1599
        1.8366    0.3791
        1.3921    0.1612
        1.6176    0.2633
    
    

    Input Arguments

    collapse all

    Labeled signal set, specified as a labeledSignalSet object. To obtain a list of feature label definitions available in lss, use the getLabelDefinitions or getLabelNames functions and specify "attributeFeature" or "roiFeature" as the label type.

    Name-Value Arguments

    Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

    Example: createFeatureData(lss,Features=getLabelDefinitions(lss,LabelType="roiFeature",FrameSize=60),OutputFormat="matrix") returns a matrix of features corresponding to region-of-interest (ROI) feature labels in the input labeled signal set with the frame size of 60.

    List of label names corresponding to features, specified as a string vector containing label names or a numeric vector containing indices pointing to the label definitions in lss. The function adds the specified label names as features to ftdata. You can get a list of all label definitions, label names, or label definition indices in lss using getLabelDefinitions, getLabelNames, and getLabelIndices, respectively. If you do not specify Features, then the function uses the list of attribute and ROI feature labels available in lss.

    Example: Features=getLabelNames(lss,LabelType="point") specifies the label names corresponding to point labels in the input labeled signal set.

    Data Types: double | logical | string | categorical

    List of label names corresponding to responses, specified as a string vector containing label names or a numeric vector containing indices pointing to the label definitions in lss. The function adds the specified label names as responses to respdata. You cannot specify feature labels as responses. If you do not specify Responses, then respdata is empty.

    Example: Responses=[1 5 7 12] specifies responses corresponding to label definitions at the provided indices in the input labeled signal set.

    Note

    Features and Responses must contain different label names or indices.

    Data Types: double | logical | string | categorical

    Output data format, specified as "table" or "matrix". If you specify OutputFormat as "table", then the function returns ftdata and respdata as tables. If you specify OutputFormat as "matrix", then the function returns ftdata and respdata as matrices.

    Data Types: char | string

    Option to apply scalar expansion to response labels, specified as logical scalar. This argument applies when the corresponding features contain multiple rows. For example, you can set this argument to true when you compute frame-based features and want to assign the same response label to each frame. When ExpandResponseLabels is set to false, the number of response label values per member must match the number of feature rows per member.

    Data Types: logical

    Option to convert features containing multiple rows to a single row vector, specified as a logical scalar. If you specify ConvertFeaturesToRows as true, then the function converts the features corresponding to column vectors or matrices to row vectors. Use this argument when all features do not have the same number of rows.

    Data Types: logical

    Output Arguments

    collapse all

    Feature data, returned as a table or matrix. By default, the function returns ftdata as a table. To output the feature data as a matrix, specify OutputFormat as "matrix".

    Response data, returned as a table or matrix. By default, the function returns respdata as a table. To output the response data as a matrix, specify OutputFormat as "matrix".

    Version History

    Introduced in R2022a