This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Signal Modeling

Linear prediction, autoregressive (AR) models, Yule-Walker, Levinson-Durbin

Signal Processing Toolbox™ provides parametric modeling techniques that let you estimate a rational transfer function that describes a signal, system, or process. Use known information about a signal to find the coefficients of a linear system that models it. Approximate a given time-domain impulse response using Prony and Steiglitz-McBride ARX models. Find an analog or digital transfer function that matches a given complex frequency response. Model resonances using linear prediction filters.

Featured Examples