getsensmatrix
Get 3-D sensitivity matrix from SimData object
Syntax
Description
[
returns the time t,r,outputFactors,inputFactors] = getsensmatrix(simdata)t and sensitivity data r as well
as all the outputFactors and inputFactors (sensitivity outputs and
inputs) from the SimData object
simdata.
[
returns the sensitivity data for only the outputs and inputs specified by
t,r,outputFactors,inputFactors] = getsensmatrix(simdata,outputFactorNames,inputFactorNames)outputFactorNames and inputFactorNames,
respectively.
Examples
This example shows how to calculate the local sensitivities of some species in the Lotka-Volterra model using the SimFunctionSensitivity object.
Load the sample project.
sbioloadproject lotka;Define the input parameters.
params = {'Reaction1.c1', 'Reaction2.c2'};Define the observed species, which are the outputs of simulation.
observables = {'y1', 'y2'};Create a SimFunctionSensitivity object. Set the sensitivity output factors to all species (y1 and y2) specified in the observables argument and input factors to those in the params argument (c1 and c2) by setting the name-value pair argument to 'all'.
f = createSimFunction(m1,params,observables,[],'SensitivityOutputs','all','SensitivityInputs','all','SensitivityNormalization','Full')
f =
SimFunction
Parameters:
Name Value Type
________________ _____ _____________
{'Reaction1.c1'} 10 {'parameter'}
{'Reaction2.c2'} 0.01 {'parameter'}
Observables:
Name Type
______ ___________
{'y1'} {'species'}
{'y2'} {'species'}
Dosed: None
Sensitivity Input Factors:
Name Type
________________ _____________
{'Reaction1.c1'} {'parameter'}
{'Reaction2.c2'} {'parameter'}
Sensitivity Output Factors:
Name Type
______ ___________
{'y1'} {'species'}
{'y2'} {'species'}
Sensitivity Normalization:
Full
Calculate sensitivities by executing the object with c1 and c2 set to 10 and 0.1, respectively. Set the output times from 1 to 10. t contains time points, y contains simulation data, and sensMatrix is the sensitivity matrix containing sensitivities of y1 and y2 with respect to c1 and c2.
[t,y,sensMatrix] = f([10,0.1],[],[],1:10);
Retrieve the sensitivity information at time point 5.
temp = sensMatrix{:};
sensMatrix2 = temp(t{:}==5,:,:);
sensMatrix2 = squeeze(sensMatrix2)sensMatrix2 = 2×2
37.6987 -6.8447
-40.2791 5.8225
The rows of sensMatrix2 represent the output factors (y1 and y2). The columns represent the input factors (c1 and c2).
Set the stop time to 15, without specifying the output times. In this case, the output times are the solver time points by default.
sd = f([10,0.1],15);
Retrieve the calculated sensitivities from the SimData object sd.
[t,y,outputs,inputs] = getsensmatrix(sd);
Plot the sensitivities of species y1 and y2 with respect to c1.
figure; plot(t,y(:,:,1)); legend(outputs); title('Sensitivities of species y1 and y2 with respect to parameter c1'); xlabel('Time'); ylabel('Sensitivity');

Plot the sensitivities of species y1 and y2 with respect to c2.
figure; plot(t,y(:,:,2)); legend(outputs); title('Sensitivities of species y1 and y2 with respect to parameter c2'); xlabel('Time'); ylabel('Sensitivity');

Alternatively, you can use sbioplot.
sbioplot(sd);
![Figure contains an axes object. The axes object with title States versus Time, xlabel Time, ylabel States contains 6 objects of type line. These objects represent y1, y2, d[y1]/d[Reaction1.c1], d[y2]/d[Reaction1.c1], d[y1]/d[Reaction2.c2], d[y2]/d[Reaction2.c2].](../../examples/simbio/win64/CalculateSensitivitiesUsingSimFunctionSensitivityObjectExample_03.png)
You can also plot the sensitivity matrix using the time integral for the calculated sensitivities of y1 and y2. The plot indicates y1 and y2 are more sensitive to c1 than c2.
[~, in, out] = size(y); result = zeros(in, out); for i = 1:in for j = 1:out result(i,j) = trapz(t(:),abs(y(:,i,j))); end end figure; hbar = bar(result); haxes = hbar(1).Parent; haxes.XTick = 1:length(outputs); haxes.XTickLabel = outputs; legend(inputs,'Location','NorthEastOutside'); ylabel('Sensitivity');

Input Arguments
Simulation data, specified as a SimData object or array of
SimData objects. If simdata is an array of
objects, the outputs are cell arrays in which each cell contains data for the
corresponding object in the SimData array.
Names of sensitivity outputs, specified as an empty array [],
character vector, string, string vector, or cell array of character vectors.
By default, the function uses an empty array [] to return
sensitivity data for all output factors in simdata.
Names of sensitivity inputs, specified as an empty array [],
character vector, string, string vector, or cell array of character vectors.
By default, the function uses an empty array [] to return
sensitivity data on all input factors in simdata.
Output Arguments
Simulation time points for the sensitivity data, returned as an m-by-1 numeric vector or cell array. m is the number of time points.
Sensitivity data, returned as an m-by-n-by-p array or cell array. m is the number of time points, n is the number of sensitivity outputs, and p is the number of sensitivity inputs.
The outputFactors output argument labels the second dimension
of r and inputFactors labels the third
dimension of r. For example, r(:,i,j) is the
time course for the sensitivity of the state outputFactors{i} to the
input inputFactor{j}.
The function returns only the sensitivity data already in the
SimData object. It does not calculate the sensitivities. For details
on setting up and performing a sensitivity calculation, see Local Sensitivity Analysis (LSA). During setup, you
can also specify how to normalize the sensitivity data.
Names of sensitivity outputs, returned as an n-by-1 cell array. n is the number of sensitivity outputs.
The output factors are the states for which you calculated the sensitivities. In other words, the sensitivity outputs are the numerators. For more information, see Local Sensitivity Analysis (LSA).
Names of sensitivity inputs, returned as an p-by-1 cell array. p is the number of input factors.
The input factors are the states with respect to which you calculated the sensitivities. In other words, the sensivity inputs are the denominators as explained in Local Sensitivity Analysis (LSA).
Version History
Introduced in R2008b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)