y = copulacdf('Gaussian',u,rho) returns
the cumulative probability of the Gaussian copula, with linear correlation
parameters rho evaluated at the points in u.
y = copulacdf('t',u,rho,nu)
returns the cumulative probability of the t copula,
with linear correlation parameters, rho, and
degrees of freedom parameter nu evaluated at
the points in u.
y = copulacdf(family,u,alpha) returns
the cumulative probability of the bivariate Archimedean copula of
the type specified by family, with scalar parameter alpha evaluated
at the points in u.
u — Values at which to evaluate cdf matrix of scalar values in the range [0,1]
Values at which to evaluate the cdf, specified as a matrix of
scalar values in the range [0,1]. If u is an n-by-p matrix,
then its values represent n points in the p-dimensional
unit hypercube. If u is an n-by-2
matrix, then its values represent n points in the
unit square.
If you specify a bivariate Archimedean copula type ('Clayton', 'Frank',
or 'Gumbel'), then u must
be an n-by-2 matrix.
Data Types: single | double
rho — Linear correlation parameters scalar values | matrix of scalar values
Linear correlation parameters for the copula, specified as a
scalar value or matrix of scalar values.
If u is an n-by-p matrix,
then rho is a p-by-p correlation
matrix.
If u is an n-by-2
matrix, then rho can be a scalar correlation
coefficient.
Data Types: single | double
nu — Degrees of freedom positive integer value
Degrees of freedom for the t copula, specified
as a positive integer value.
Data Types: single | double
family — Bivariate Archimedean copula family 'Clayton' | 'Frank' | 'Gumbel'
Bivariate Archimedean copula family, specified as one of the
following.
'Clayton'
Clayton copula
'Frank'
Frank copula
'Gumbel'
Gumbel copula
alpha — Bivariate Archimedean copula parameter scalar value
Bivariate Archimedean copula parameter, specified as a scalar
value. Permitted values for alpha depend on the
specified copula family.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.