fsrftest
Univariate feature ranking for regression using F-tests
Syntax
Description
ranks features (predictors) using F-tests. The table idx = fsrftest(Tbl,ResponseVarName)Tbl contains predictor variables and a response variable, and ResponseVarName is the name of the response variable in Tbl. The function returns idx, which contains the indices of predictors ordered by predictor importance, meaning idx(1) is the index of the most important predictor. You can use idx to select important predictors for regression problems.
specifies additional options using one or more name-value pair arguments in addition to any of the input argument combinations in the previous syntaxes. For example, you can specify categorical predictors and observation weights.idx = fsrftest(___,Name,Value)
Examples
Rank predictors in a numeric matrix and create a bar plot of predictor importance scores.
Load the sample data.
load robotarm.matThe robotarm data set contains 7168 training observations (Xtrain and ytrain) and 1024 test observations (Xtest and ytest) with 32 features [1][2].
Rank the predictors using the training observations.
[idx,scores] = fsrftest(Xtrain,ytrain);
The values in scores are the negative logs of the p-values. If a p-value is smaller than eps(0), then the corresponding score value is Inf. Before creating a bar plot, determine whether scores includes Inf values.
find(isinf(scores))
ans = 1×0 empty double row vector
scores does not include Inf values. If scores includes Inf values, you can replace Inf by a large numeric number before creating a bar plot for visualization purposes. For details, see Rank Predictors in Table.
Create a bar plot of the predictor importance scores.
bar(scores(idx)) xlabel('Predictor rank') ylabel('Predictor importance score')

Select the top five most important predictors. Find the columns of these predictors in Xtrain.
idx(1:5)
ans = 1×5
30 24 10 4 5
The 30th column of Xtrain is the most important predictor of ytrain.
Rank predictors in a table and create a bar plot of predictor importance scores.
If your data is in a table and fsrftest ranks a subset of the variables in the table, then the function indexes the variables using only the subset. Therefore, a good practice is to move the predictors that you do not want to rank to the end of the table. Move the response variable and observation weight vector as well. Then, the indexes of the output arguments are consistent with the indexes of the table. You can move variables in a table using the movevars function.
This example uses the Abalone data [3][4] from the UCI Machine Learning Repository [5].
Download the data and save it in your current folder with the name 'abalone.csv'.
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data'; websave('abalone.csv',url);
Read the data in a table.
tbl = readtable('abalone.csv','Filetype','text','ReadVariableNames',false); tbl.Properties.VariableNames = {'Sex','Length','Diameter','Height', ... 'WWeight','SWeight','VWeight','ShWeight','NoShellRings'};
Preview the first few rows of the table.
head(tbl)
ans=8×9 table
Sex Length Diameter Height WWeight SWeight VWeight ShWeight NoShellRings
_____ ______ ________ ______ _______ _______ _______ ________ ____________
{'M'} 0.455 0.365 0.095 0.514 0.2245 0.101 0.15 15
{'M'} 0.35 0.265 0.09 0.2255 0.0995 0.0485 0.07 7
{'F'} 0.53 0.42 0.135 0.677 0.2565 0.1415 0.21 9
{'M'} 0.44 0.365 0.125 0.516 0.2155 0.114 0.155 10
{'I'} 0.33 0.255 0.08 0.205 0.0895 0.0395 0.055 7
{'I'} 0.425 0.3 0.095 0.3515 0.141 0.0775 0.12 8
{'F'} 0.53 0.415 0.15 0.7775 0.237 0.1415 0.33 20
{'F'} 0.545 0.425 0.125 0.768 0.294 0.1495 0.26 16
The last variable in the table is a response variable.
Rank the predictors in tbl. Specify the last column NoShellRings as a response variable.
[idx,scores] = fsrftest(tbl,'NoShellRings')idx = 1×8
3 4 5 7 8 2 6 1
scores = 1×8
447.6891 736.9619 Inf Inf Inf 604.6692 Inf Inf
The values in scores are the negative logs of the p-values. If a p-value is smaller than eps(0), then the corresponding score value is Inf. Before creating a bar plot, determine whether scores includes Inf values.
idxInf = find(isinf(scores))
idxInf = 1×5
3 4 5 7 8
scores includes five Inf values.
Create a bar plot of predictor importance scores. Use the predictor names for the x-axis tick labels.
bar(scores(idx)) xlabel('Predictor rank') ylabel('Predictor importance score') xticklabels(strrep(tbl.Properties.VariableNames(idx),'_','\_')) xtickangle(45)
The bar function does not plot any bars for the Inf values. For the Inf values, plot bars that have the same length as the largest finite score.
hold on bar(scores(idx(length(idxInf)+1))*ones(length(idxInf),1)) legend('Finite Scores','Inf Scores') hold off

The bar graph displays finite scores and Inf scores using different colors.
Input Arguments
Sample data, specified as a table. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.
Each row of Tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain additional columns for a response variable and observation weights. The response variable must be a numeric vector.
If
Tblcontains the response variable, and you want to use all remaining variables inTblas predictors, then specify the response variable by usingResponseVarName. IfTblalso contains the observation weights, then you can specify the weights by usingWeights.If
Tblcontains the response variable, and you want to use only a subset of the remaining variables inTblas predictors, then specify the subset of variables by usingformula.If
Tbldoes not contain the response variable, then specify a response variable by usingY. The response variable andTblmust have the same number of rows.
If fsrftest uses a subset of variables in Tbl as predictors, then the function indexes the predictors using only the subset. The values in the CategoricalPredictors name-value argument and the output argument idx do not count the predictors that the function does not rank.
If Tbl contains a response variable, then fsrftest considers NaN values in the response variable to be missing values. fsrftest does not use observations with missing values in the response variable.
Data Types: table
Response variable name, specified as a character vector or string scalar containing the name of a variable in Tbl.
For example, if a response variable is the column Y of
Tbl (Tbl.Y), then specify
ResponseVarName as "Y".
Data Types: char | string
Explanatory model of the response variable and a subset of the predictor variables, specified
as a character vector or string scalar in the form "Y ~ x1 + x2 +
x3". In this form, Y represents the response variable, and
x1, x2, and x3 represent
the predictor variables.
To specify a subset of variables in Tbl as predictors, use a formula. If
you specify a formula, then fsrftest does not rank any variables
in Tbl that do not appear in formula.
The variable names in the formula must be both variable names in
Tbl (Tbl.Properties.VariableNames) and valid
MATLAB® identifiers. You can verify the variable names in Tbl
by using the isvarname function. If the variable
names are not valid, then you can convert them by using the matlab.lang.makeValidName function.
Data Types: char | string
Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and each column corresponds to one predictor variable.
Data Types: single | double
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where Name is
the argument name and Value is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: 'NumBins',20,'UseMissing',true sets the number of bins as 20 and specifies to use missing values in predictors for ranking.
List of categorical predictors, specified as one of the values in this table.
| Value | Description |
|---|---|
| Vector of positive integers |
Each entry in the vector is an index value indicating that the corresponding predictor is
categorical. The index values are between 1 and If |
| Logical vector |
A |
| Character matrix | Each row of the matrix is the name of a predictor variable. The
names must match the names in Tbl. Pad the
names with extra blanks so each row of the character matrix has the
same length. |
| String array or cell array of character vectors | Each element in the array is the name of a predictor variable.
The names must match the names in Tbl. |
"all" | All predictors are categorical. |
By default, if the predictor data is a table
(Tbl), fsrftest assumes that a variable is
categorical if it is a logical vector, unordered categorical vector, character array, string
array, or cell array of character vectors. If the predictor data is a matrix
(X), fsrftest assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using
the CategoricalPredictors name-value argument.
Example: "CategoricalPredictors","all"
Example: CategoricalPredictors=[1 5 6 8]
Data Types: single | double | logical | char | string | cell
Number of bins for binning continuous predictors, specified as the comma-separated pair consisting of 'NumBins' and a positive integer scalar.
Example: 'NumBins',50
Data Types: single | double
Indicator for whether to use or discard missing values in predictors, specified as the
comma-separated pair consisting of 'UseMissing' and either
true to use or false to discard missing values
in predictors for ranking.
fsrftest considers NaN,
'' (empty character vector), "" (empty
string), <missing>, and <undefined>
values to be missing values.
If you specify 'UseMissing',true, then
fsrftest uses missing values for ranking. For a categorical
variable, fsrftest treats missing values as an extra category.
For a continuous variable, fsrftest places
NaN values in a separate bin for binning.
If you specify 'UseMissing',false, then
fsrftest does not use missing values for ranking. Because
fsrftest computes importance scores individually for each
predictor, the function does not discard an entire row when values in the row are
partially missing. For each variable, fsrftest uses all values
that are not missing.
Example: 'UseMissing',true
Data Types: logical
Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of scalar values or the name of a variable in Tbl. The function weights the observations in each row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the number of rows in X or Tbl.
If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that contains a numeric vector. In this case, you must specify Weights as a character vector or string scalar. For example, if the weight vector is the column W of Tbl (Tbl.W), then specify 'Weights','W'.
fsrftest normalizes the weights to add up to one. Inf weights are not supported.
Data Types: single | double | char | string
Output Arguments
Indices of predictors in X or Tbl ordered by
predictor importance, returned as a 1-by-r numeric vector, where
r is the number of ranked predictors.
If Tbl contains the response variable, then the function indexes
the predictors excluding the response variable. For example, suppose
Tbl includes 10 columns and you specify the second column of
Tbl as the response variable. If idx(3) is
5, then the third most important predictor is the sixth column of
Tbl.
If fsrftest uses a subset of variables in Tbl as
predictors, then the function indexes the predictors using only the subset. For example,
suppose Tbl includes 10 columns and you specify the last five
columns of Tbl as the predictor variables by using
formula. If idx(3) is 5,
then the third most important predictor is the 10th column in Tbl,
which is the fifth predictor in the subset.
Predictor scores, returned as a 1-by-r numeric vector, where r is the number of ranked predictors.
A large score value indicates that the corresponding predictor is important.
For example, suppose Tbl includes 10 columns and you specify the last
five columns of Tbl as the predictor variables by using
formula. Then, score(3) contains the score
value of the 8th column in Tbl, which is the third predictor in the
subset.
Algorithms
fsrftestexamines the importance of each predictor individually using an F-test. Each F-test tests the hypothesis that the response values grouped by predictor variable values are drawn from populations with the same mean against the alternative hypothesis that the population means are not all the same. A small p-value of the test statistic indicates that the corresponding predictor is important.The output
scoresis –log(p). Therefore, a large score value indicates that the corresponding predictor is important. If a p-value is smaller thaneps(0), then the output isInf.fsrftestexamines a continuous variable after binning, or discretizing, the variable. You can specify the number of bins using the'NumBins'name-value pair argument.
References
[1] Rasmussen, C. E., R. M. Neal, G. E. Hinton, D. van Camp, M. Revow, Z. Ghahramani, R. Kustra, and R. Tibshirani. The DELVE Manual, 1996.
[2] University of Toronto, Computer Science Department. Delve Datasets.
[3] Nash, W.J., T. L. Sellers, S. R. Talbot, A. J. Cawthorn, and W. B. Ford. "The Population Biology of Abalone (Haliotis species) in Tasmania. I. Blacklip Abalone (H. rubra) from the North Coast and Islands of Bass Strait." Sea Fisheries Division, Technical Report No. 48, 1994.
[4] Waugh, S. "Extending and Benchmarking Cascade-Correlation: Extensions to the Cascade-Correlation Architecture and Benchmarking of Feed-forward Supervised Artificial Neural Networks." University of Tasmania Department of Computer Science thesis, 1995.
[5] Lichman, M. UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science, 2013. http://archive.ics.uci.edu/ml.
Version History
Introduced in R2020a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)