refit
Class: GeneralizedLinearMixedModel
Refit generalized linear mixed-effects model
Description
Input Arguments
Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object.
For properties and methods of this object, see GeneralizedLinearMixedModel.
New response vector, specified as an n-by-1
vector of scalar values, where n is the number
of observations used to fit glme.
For an observation i with prior weights wip and
binomial size ni (when
applicable), the response values yi contained
in ynew can have the following values.
| Distribution | Permitted Values | Notes | 
|---|---|---|
| Binomial |  | wip and ni are integer values > 0 | 
| Poisson |  | wip is an integer value > 0 | 
| Gamma | (0,∞) | wip ≥ 0 | 
| InverseGaussian | (0,∞) | wip ≥ 0 | 
| Normal | (–∞,∞) | wip ≥ 0 | 
You can access the prior weights property wip using dot notation.
glme.ObservationInfo.Weights
Data Types: single | double
Output Arguments
Examples
Load the sample data.
load mfrThis simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:
- Flag to indicate whether the batch used the new process ( - newprocess)
- Processing time for each batch, in hours ( - time)
- Temperature of the batch, in degrees Celsius ( - temp)
- Categorical variable indicating the supplier ( - A,- B, or- C) of the chemical used in the batch (- supplier)
- Number of defects in the batch ( - defects)
The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius. 
Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0. 
The number of defects can be modeled using a Poisson distribution
This corresponds to the generalized linear mixed-effects model
where
- is the number of defects observed in the batch produced by factory during batch . 
- is the mean number of defects corresponding to factory (where ) during batch (where ). 
- , , and are the measurements for each variable that correspond to factory during batch . For example, indicates whether the batch produced by factory during batch used the new process. 
- and are dummy variables that use effects (sum-to-zero) coding to indicate whether company - Cor- B, respectively, supplied the process chemicals for the batch produced by factory during batch .
- is a random-effects intercept for each factory that accounts for factory-specific variation in quality. 
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Use random to simulate a new response vector from the fitted model. 
rng(0,'twister'); % For reproducibility ynew = random(glme);
Refit the model using the new response vector.
glme = refit(glme,ynew)
glme = 
Generalized linear mixed-effects model fit by ML
Model information:
    Number of observations             100
    Fixed effects coefficients           6
    Random effects coefficients         20
    Covariance parameters                1
    Distribution                    Poisson
    Link                            Log   
    FitMethod                       Laplace
Formula:
    defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)
Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    469.24    487.48    -227.62          455.24  
Fixed effects coefficients (95% CIs):
    Name                   Estimate    SE          tStat       DF    pValue        Lower        Upper   
    {'(Intercept)'}          1.5738     0.18674      8.4276    94    4.0158e-13        1.203      1.9445
    {'newprocess' }        -0.21089      0.2306    -0.91455    94       0.36277     -0.66875     0.24696
    {'time_dev'   }        -0.13769     0.77477    -0.17772    94       0.85933       -1.676      1.4006
    {'temp_dev'   }         0.24339     0.84657      0.2875    94       0.77436      -1.4375      1.9243
    {'supplier_C' }        -0.12102     0.07323     -1.6526    94       0.10175     -0.26642    0.024381
    {'supplier_B' }        0.098254    0.066943      1.4677    94       0.14551    -0.034662     0.23117
Random effects covariance parameters:
Group: factory (20 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.46587 
Group: Error
    Name                        Estimate
    {'sqrt(Dispersion)'}        1       
Tips
- You can use - refitand- randomto conduct a simulated likelihood ratio test or parametric bootstrap.
See Also
GeneralizedLinearMixedModel | fitted | residuals | designMatrix
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)