estimateMAP
Class: HamiltonianSampler
Estimate maximum of log probability density
Syntax
xhat = estimateMAP(smp)
[xhat,fitinfo]
= estimateMAP(smp)
[xhat,fitinfo]
= estimateMAP(___,Name,Value)
Description
xhat = estimateMAP(smp)smp.
[ returns additional
fitting information in xhat,fitinfo]
= estimateMAP(smp)fitinfo.
[ specifies
additional options using one or more name-value pair arguments. Specify
name-value pair arguments after all other input arguments.xhat,fitinfo]
= estimateMAP(___,Name,Value)
Input Arguments
Name-Value Arguments
Output Arguments
Examples
Tips
- First create a Hamiltonian Monte Carlo sampler using the - hmcSamplerfunction, and then use- estimateMAPto estimate the MAP point.
- After creating an HMC sampler, you can tune the sampler, draw samples, and check convergence diagnostics using the other methods of the - HamiltonianSamplerclass. Using the MAP estimate as a starting point in the- tuneSamplerand- drawSamlesmethods can lead to more efficient tuning and sampling. For an example of this workflow, see Bayesian Linear Regression Using Hamiltonian Monte Carlo.
Algorithms
- estimateMAPuses a limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) quasi-Newton optimizer to search for the maximum of the log probability density. See Nocedal and Wright [1].
References
[1] Nocedal, J. and S. J. Wright. Numerical Optimization, Second Edition. Springer Series in Operations Research, Springer Verlag, 2006.
Version History
Introduced in R2017a
