This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

coefCI

Confidence intervals of coefficient estimates of linear regression model

Syntax

ci = coefCI(mdl)
ci = coefCI(mdl,alpha)

Description

example

ci = coefCI(mdl) returns 95% confidence intervals for the coefficients in mdl.

example

ci = coefCI(mdl,alpha) returns confidence intervals using the confidence level 1 – alpha.

Examples

collapse all

Fit a linear regression model and obtain the default 95% confidence intervals for the resulting model coefficients.

Load the carbig data set and create a table in which the Origin predictor is categorical.

load carbig
Origin = categorical(cellstr(Origin));
tbl = table(Horsepower,Weight,MPG,Origin);

Fit a linear regression model. Specify Horsepower, Weight, and Origin as predictor variables, and specify MPG as the response variable.

modelspec = 'MPG ~ 1 + Horsepower + Weight + Origin';
mdl = fitlm(tbl,modelspec);

View the names of the coefficients.

mdl.CoefficientNames
ans = 1x9 cell array
  Columns 1 through 4

    {'(Intercept)'}    {'Horsepower'}    {'Weight'}    {'Origin_France'}

  Columns 5 through 7

    {'Origin_Germany'}    {'Origin_Italy'}    {'Origin_Japan'}

  Columns 8 through 9

    {'Origin_Sweden'}    {'Origin_USA'}

Find confidence intervals for the coefficients of the model.

ci = coefCI(mdl)
ci = 9×2

   43.3611   59.9390
   -0.0748   -0.0315
   -0.0059   -0.0037
  -17.3623   -0.3477
  -15.7503    0.7434
  -17.2091    0.0613
  -14.5106    1.8738
  -18.5820   -1.5036
  -17.3114   -0.9642

Fit a linear regression model and obtain the confidence intervals for the resulting model coefficients using a specified confidence level.

Load the carbig data set and create a table in which the Origin predictor is categorical.

load carbig
Origin = categorical(cellstr(Origin));
tbl = table(Horsepower,Weight,MPG,Origin);

Fit a linear regression model. Specify Horsepower, Weight, and Origin as predictor variables, and specify MPG as the response variable.

modelspec = 'MPG ~ 1 + Horsepower + Weight + Origin';
mdl = fitlm(tbl,modelspec);

Find 99% confidence intervals for the coefficients.

ci = coefCI(mdl,.01)
ci = 9×2

   40.7365   62.5635
   -0.0816   -0.0246
   -0.0062   -0.0034
  -20.0560    2.3459
  -18.3615    3.3546
  -19.9433    2.7955
  -17.1045    4.4676
  -21.2858    1.2002
  -19.8995    1.6238

The confidence intervals are wider than the default 95% confidence intervals in Find Confidence Intervals for Model Coefficients.

Input Arguments

collapse all

Linear regression model object, specified as a LinearModel object created by using fitlm or stepwiselm, or a CompactLinearModel object created by using compact.

Significance level for the confidence interval, specified as a numeric value in the range [0,1]. The confidence level of ci is equal to 100(1 – alpha)%. alpha is the probability that the confidence interval does not contain the true value.

Example: 0.01

Data Types: single | double

Output Arguments

collapse all

Confidence intervals, returned as a k-by-2 numeric matrix, where k is the number of coefficients. The jth row of ci is the confidence interval of the jth coefficient of mdl. The name of coefficient j is stored in the CoefficientNames property of mdl.

Data Types: single | double

More About

collapse all

Confidence Interval

The coefficient confidence intervals provide a measure of precision for linear regression coefficient estimates. A 100(1 – α)% confidence interval gives the range that the corresponding regression coefficient will be in with 100(1 – α)% confidence, meaning that 100(1 – α)% of the intervals resulting from repeated experimentation will contain the true value of the coefficient.

The 100*(1 – α)% confidence intervals for linear regression coefficients are

bi±t(1α/2,np)SE(bi),

where bi is the coefficient estimate, SE(bi) is the standard error of the coefficient estimate, and t(1–α/2,np) is the 100(1 – α/2) percentile of t-distribution with n – p degrees of freedom. n is the number of observations and p is the number of regression coefficients.

Introduced in R2012a