multcompare
Multiple comparison of marginal means for multiple analysis of variance (MANOVA)
Since R2023b
Description
specifies options using one or more name-value arguments in addition to any of the input
argument combinations in the previous syntaxes. For example, you can specify the confidence
level and the type of critical value used to determine if the means are significantly
different. m = multcompare(___,Name=Value)
Examples
Load the patients data set.
load patientsThe variable Smoker contains data for patient smoking status, and the variables Systolic and Diastolic contain data for patient systolic and diastolic blood pressure.
Perform a one-way MANOVA using Smoker as the factor and Systolic and Diastolic as the response variables.
maov = manova(Smoker,[Systolic Diastolic],FactorNames="Smoker")maov =
1-way manova
Y1,Y2 ~ 1 + Smoker
Source DF TestStatistic Value F DFNumerator DFDenominator pValue
______ __ _____________ ______ ______ ___________ _____________ __________
Smoker 1 pillai 0.6763 101.33 2 97 1.7465e-24
Error 98
Total 99
Properties, Methods
maov is a manova object containing the results of the one-way MANOVA. The small p-value for Smoker indicates that smoking status has a statistically significant effect on the mean response vector.
Perform a multiple comparison of marginal means for the one-way MANOVA.
m = multcompare(maov)
m=1×6 table
Group1 Group2 MeanDifference Lower Upper pValue
______ ______ ______________ _______ _______ __________
false true -10.246 -11.667 -8.8247 1.0596e-10
The MeanDifference column in the table output indicates that the marginal mean for smokers is larger than the marginal mean for non-smokers. The small p-value in the pValue column indicates that this difference is statistically significant, which is consistent with the small p-value for the Smoker term in the MANOVA model.
Load the carsmall data set.
load carsmallThe variable Model_Year contains data for the year a car was manufactured, and the variable Cylinders contains data for the number of engine cylinders in the car. The Acceleration and Displacement variables contain data for car acceleration and displacement.
Use the table function to create a table from the data in Model_Year, Cylinders, Acceleration, and Displacement.
tbl = table(Model_Year,Cylinders,Acceleration,Displacement,VariableNames=["Year" "Cylinders" "Acceleration" "Displacement"]);
Perform a two-way MANOVA using the table variables Year and Cylinders as factors, and the Acceleration and Displacement variables as response variables.
maov = manova(tbl,"Acceleration,Displacement ~ Cylinders + Year")maov =
2-way manova
Acceleration,Displacement ~ 1 + Year + Cylinders
Source DF TestStatistic Value F DFNumerator DFDenominator pValue
_________ __ _____________ ________ ______ ___________ _____________ __________
Year 2 pillai 0.084893 2.1056 4 190 0.081708
Cylinders 2 pillai 0.94174 42.27 4 190 2.5049e-25
Error 95
Total 99
Properties, Methods
maov is a manova object that contains the results of the two-way MANOVA. The table output shows that the p-value for the MANOVA model term Year is too large to conclude that Year has a statistically significant effect on the mean response vector. However, the small p-value for Cylinders indicates that enough evidence exists to conclude that Cylinders has a statistically significant effect on the mean response vector.
Perform Scheffe's test to determine which values of the factor Cylinders correspond to statistically different marginal means.
m = multcompare(maov,"Cylinders",CriticalValueType="scheffe")
m=3×6 table
Group1 Group2 MeanDifference Lower Upper pValue
______ ______ ______________ _______ _______ __________
4 6 -53.756 -66.044 -41.467 2.0412e-17
4 8 -117.35 -129.12 -105.58 3.3198e-42
6 8 -63.594 -77.001 -50.188 2.4573e-19
The small p-values in the pValue column indicate that each marginal mean is statistically different from the other two.
Input Arguments
MANOVA results, specified as a manova object.
The properties of maov contain the factor values and response data
used by multcompare to calculate the difference in means.
Factor used to group the response data, specified as a string scalar or character array.
factor must be a name in
maov.FactorNames.
Example: "Factor2"
Data Types: char | string
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where Name is
the argument name and Value is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Example: multcompare(maov,Alpha=0.01,CriticalValueType="dunnett") sets
the significance level of the confidence intervals to 0.01 and uses
Dunnett's critical value to calculate the p-values.
Significance level for the estimates, specified as a scalar value in the range
(0,1). The confidence level of the confidence intervals is . The default value for Alpha is
0.05, which returns 95% confidence intervals for the
estimates.
Example: Alpha=0.01
Data Types: single | double
Critical value type used by the multcompare function to
calculate p-values, specified as one of the options in the
following table. Each option specifies the statistical test that
multcompare uses to calculate the critical value.
| Option | Statistical Test |
|---|---|
"tukey-kramer" (default) | Tukey-Kramer test |
"hsd" | Honestly Significant Difference test (same as
"tukey-kramer") |
"dunn-sidak" | Dunn-Sidak correction |
"bonferroni" | Bonferroni correction |
"scheffe" | Scheffé test |
"dunnett" | Dunnett's test — The control group is selected in the generated plot and cannot be changed. |
"lsd" | Stands for Least Significant Difference and uses the critical value for a plain t-test. This option does not protect against the multiple comparisons problem. In other words, the probability of two marginal means being incorrectly flagged as significantly different increases with the number of factor values. |
Example: CriticalValueType="dunn-sidak"
Data Types: char | string
Output Arguments
Multiple comparison procedure results, returned as a table with the following variables:
Group1— Values of the factors in the first comparison groupGroup2— Values of the factors in the second comparison groupMeanDifference— Difference in the marginal mean response between the observations inGroup1and the observations inGroup2Lower— 95% lower confidence bound on the marginal mean differenceUpper— 95% upper confidence bound on the marginal mean differencepValue— p-value corresponding to the null hypothesis that the marginal mean ofGroup1is not statistically different from the mean ofGroup2
Version History
Introduced in R2023b
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)