This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.


Class: RegressionTree

Compact regression tree


ctree = compact(tree)


ctree = compact(tree) creates a compact version of tree.

Input Arguments


A regression tree created using fitrtree.

Output Arguments


A compact regression tree. ctree has class CompactRegressionTree. You can predict regressions using ctree exactly as you can using tree. However, since ctree does not contain training data, you cannot perform some actions, such as cross validation.


expand all

Compare the size of a full regression tree model to the compacted model.

Load the carsmall data set. Consider Acceleration, Displacement, Horsepower, and Weight as predictor variables.

load carsmall
X = [Acceleration Cylinders Displacement Horsepower Weight];

Grow a regression tree using the entire data set.

Mdl = fitrtree(X,MPG)
Mdl = 
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 94

  Properties, Methods

Mdl is a RegressionTree model. It is a full model, that is, it stores information such as the predictor and response data fitrtree used in training. For a properties list of full regression tree models, see RegressionTree.

Create a compact version of the full regression tree. That is, one that contains enough information to make predictions only.

CMdl = compact(Mdl)
CMdl = 
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'

  Properties, Methods

CMdl is a CompactRegressionTree model. For a properties list of compact regression tree models, see CompactRegressionTree.

Inspect the amounts of memory that the full and compact regression trees consume.

mdlInfo = whos('Mdl');
cMdlInfo = whos('CMdl');
[mdlInfo.bytes cMdlInfo.bytes]
ans = 1×2

       12131        6628

ans = 0.5464

In this case, the compact regression tree model consumes about 25% less memory than the full model consumes.