erfcinv
Inverse complementary error function
Syntax
Description
erfcinv( computes the inverse complementary error
function of X)X. If X is a vector
or a matrix, erfcinv(X) computes the inverse complementary error
function of each element of X.
Examples
Inverse Complementary Error Function for Floating-Point and Symbolic Numbers
Depending on its arguments, erfcinv can
return floating-point or exact symbolic results.
Compute the inverse complementary error function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:
A = [erfcinv(1/2), erfcinv(1.33), erfcinv(3/2)]
A =
0.4769 -0.3013 -0.4769Compute the inverse complementary error function for the same numbers converted to
symbolic objects. For most symbolic (exact) numbers, erfcinv
returns unresolved symbolic calls:
symA = [erfcinv(sym(1/2)), erfcinv(sym(1.33)), erfcinv(sym(3/2))]
symA = [ -erfcinv(3/2), erfcinv(133/100), erfcinv(3/2)]
Use vpa to approximate symbolic results with the required
number of digits:
d = digits(10); vpa(symA) digits(d)
ans = [ 0.4769362762, -0.3013321461, -0.4769362762]
Inverse Complementary Error Function for Variables and Expressions
For most symbolic variables and expressions,
erfcinv returns unresolved symbolic calls.
Compute the inverse complementary error function for x and
sin(x) + x*exp(x). For most symbolic variables and
expressions, erfcinv returns unresolved symbolic calls:
syms x f = sin(x) + x*exp(x); erfcinv(x) erfcinv(f)
ans = erfcinv(x) ans = erfcinv(sin(x) + x*exp(x))
Inverse Complementary Error Function for Vectors and Matrices
If the input argument is a vector or a matrix,
erfcinv returns the inverse complementary error
function for each element of that vector or matrix.
Compute the inverse complementary error function for elements of matrix
M and vector V:
M = sym([0 1 + i; 1/3 1]); V = sym([2; inf]); erfcinv(M) erfcinv(V)
ans = [ Inf, NaN] [ -erfcinv(5/3), 0] ans = -Inf NaN
Special Values of Inverse Complementary Error Function
erfcinv returns special values for
particular parameters.
Compute the inverse complementary error function for x = 0, x = 1, and x = 2. The inverse complementary error function has special values for these parameters:
[erfcinv(0), erfcinv(1), erfcinv(2)]
ans = Inf 0 -Inf
Handling Expressions That Contain Inverse Complementary Error Function
Many functions, such as diff and
int, can handle expressions containing
erfcinv.
Compute the first and second derivatives of the inverse complementary error function:
syms x diff(erfcinv(x), x) diff(erfcinv(x), x, 2)
ans = -(pi^(1/2)*exp(erfcinv(x)^2))/2 ans = (pi*exp(2*erfcinv(x)^2)*erfcinv(x))/2
Compute the integral of the inverse complementary error function:
int(erfcinv(x), x)
ans = exp(-erfcinv(x)^2)/pi^(1/2)
Plot Inverse Complementary Error Function
Plot the inverse complementary error function on the interval from 0 to 2.
syms x fplot(erfcinv(x),[0 2]) grid on

Input Arguments
More About
Tips
Calling
erfcinvfor a number that is not a symbolic object invokes the MATLAB®erfcinvfunction. This function accepts real arguments only. If you want to compute the inverse complementary error function for a complex number, usesymto convert that number to a symbolic object, and then callerfcinvfor that symbolic object.If x < 0 or x > 2, or if x is complex, then
erfcinv(x)returnsNaN.
Algorithms
The toolbox can simplify expressions that contain error functions and their inverses.
For real values x, the toolbox applies these simplification
rules:
erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 - erf(x)) = erfcinv(erfc(x)) = xerfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 + erf(x)) = erfcinv(2 - erfc(x)) = -x
For any value x, the toolbox applies these simplification
rules:
erfcinv(x) = erfinv(1 - x)erfinv(-x) = -erfinv(x)erfcinv(2 - x) = -erfcinv(x)erf(erfinv(x)) = erfc(erfcinv(x)) = xerf(erfcinv(x)) = erfc(erfinv(x)) = 1 - x
References
[1] Gautschi, W. “Error Function and Fresnel Integrals.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
Version History
Introduced in R2012a