powermod
Modular exponentiation
Syntax
Description
c = powermod(
returns the modular exponentiation ab mod m. The input a,b,m)a,b must be integers, and
m must be a nonnegative integer. For more information, see
Modular Exponentiation.
Examples
Compute the modular exponentiation ab mod m by using powermod. The
powermod function is efficient because it does not
calculate the exponential ab.
c = powermod(3,5,7)
c =
5Fermat's little theorem states that if p is prime and a is not divisible by p, then a(p–1) mod p is 1.
Test Fermat's little theorem for p = 5, a =
3. As expected, powermod returns
1.
p = 5; a = 3; c = powermod(a,p-1,p)
c = 1
Test the same case for all values of a less than
p. The function powermod acts
element-wise to return a vector of ones.
p = 5; a = 1:p-1; c = powermod(a,p-1,p)
c =
1 1 1 1Fermat's little theorem states that if p is a prime number and a is not divisible by p, then a(p–1) mod p is 1. On the contrary, if a(p–1) mod p is 1 and a is not divisible by p, then p is not always a prime number (p can be a pseudoprime).
Test numbers from 300 to 400 for
primality by using Fermat's little theorem with base
2.
p = 300:400; remainder = powermod(2,p-1,p); primesFermat = p(remainder == 1)
primesFermat = 307 311 313 317 331 337 341 347 349 353... 359 367 373 379 383 389 397
Find Fermat pseudoprimes by comparing the results with
isprime. 341 is a Fermat
pseudoprime.
primeNumbers = p(isprime(p)); setdiff(primesFermat,primeNumbers)
ans = 341
Input Arguments
Base, specified as a number, vector, matrix, array, or a symbolic number
or array. a must be an integer.
Exponent or power, specified as a number, vector, matrix, array, or a
symbolic number or array. b must be an integer.
Divisor, specified as a number, vector, matrix, array, or a symbolic
number or array. m must be a nonnegative
integer.
More About
For a positive exponent b, the modular exponentiation c is defined as
c = ab mod m.
For a negative exponent b, the definition can be extended by finding the modular multiplicative inverse d of a modulo m, that is
c = d ‒b mod m.
where d satisfies the relation
ad mod m = 1.
Version History
Introduced in R2018a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)