ssinint
Shifted sine integral function
Syntax
Description
ssinint( returns the shifted sine integral
function
X)ssinint(X) = sinint(X) — pi/2.
Examples
Shifted Sine Integral Function for Numeric and Symbolic Arguments
Depending on its arguments, ssinint returns
floating-point or exact symbolic results.
Compute the shifted sine integral function for these numbers. Because these numbers
are not symbolic objects, ssinint returns floating-point
results.
A = ssinint([- pi, 0, pi/2, pi, 1])
A = -3.4227 -1.5708 -0.2000 0.2811 -0.6247
Compute the shifted sine integral function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, ssinint returns
unresolved symbolic calls.
symA = ssinint(sym([- pi, 0, pi/2, pi, 1]))
symA = [ - pi - ssinint(pi), -pi/2, ssinint(pi/2), ssinint(pi), ssinint(1)]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -3.4227333787773627895923750617977,... -1.5707963267948966192313216916398,... -0.20003415864040813916164340325818,... 0.28114072518756955112973167851824,... -0.62471325642771360428996837781657]
Plot Shifted Sine Integral Function
Plot the shifted sine integral function on the interval from -4*pi to 4*pi.
syms x fplot(ssinint(x),[-4*pi 4*pi]) grid on

Handle Expressions Containing Shifted Sine Integral Function
Many functions, such as diff,
int, and taylor, can handle expressions
containing ssinint.
Find the first and second derivatives of the shifted sine integral function:
syms x diff(ssinint(x), x) diff(ssinint(x), x, x)
ans = sin(x)/x ans = cos(x)/x - sin(x)/x^2
Find the indefinite integral of the shifted sine integral function:
int(ssinint(x), x)
ans = cos(x) + x*ssinint(x)
Find the Taylor series expansion of ssinint(x):
taylor(ssinint(x), x)
ans = x^5/600 - x^3/18 + x - pi/2
Input Arguments
More About
References
[1] Gautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
Version History
Introduced in R2014a