Eigen vector in SVD??
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Im going to compute the eigen value and eigen vector from my Matrix data fro the classification.
The rows represent the different classes and the columns represent the features.
So, for example if I have
X=
[2 3 4]
[3 2 4]
[4 5 6]
[8 9 0]
*I have to use SVD instead of PCA because the matrix is not square.*
What I have done are:
1. Compute the mean for each row. So I have
Mean=
M1
M2
M3
M4
2. Substract my matrix **X** with the Mean
Substract=
[2-M1 3-M1 4-M1]
[3-M2 2-M2 4-M2]
[4-M3 5-M3 6-M3]
[8-M4 9-M4 0-M4]
3. Covariance Matrix = (Substract*Substract^t)/(4-1)
4. [U,S,V] = svd(X)
Are all my step right? By computing the mean for each row (as the classes)?
If I want to project my data into eigen space (for dimensionality reduction), which is the eigen vector (U or V)??
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!