Plot the integral of a discrete function
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Good morning, I have to plot the integral of a discrete function (t,df/dt) defined in a file *.txt. I want to plot (t,f). f is an angle. I've tried with the command trapz but it gives only the numeric value of the area. Thanks
0 commentaires
Réponses (2)
Youssef Khmou
le 14 Mai 2014
Trapz function returns a scalar value, numeric primitive can be calculated using the following function :
function itg=integral(f,dx,smooth);
% INTEGRAL ANS=INTEGRAL(F,DX)
% This function computes the integral of F(X)DX where the integrand
% is specified at discrete points F spaced DX apart (F is a vector,
% DX is a scalar). Simpsons Rule is used, so that the error
% is O(dx^5*F4). (F4 is the 4th derivative of F).
%
% If F is a matrix, then the integration is done for each column.
%
% If F is really spiky, then INTEGRAL(F,DX,'smooth') may
% provide a better looking result (the result is smoothed
% with a 3 point triangular filter).
%
% Author: RP (WHOI) 15/Aug/92
[N,M]=size(f);
if (N==1 | M==1),
N=max(size(f));
itg=zeros(size(f));
itg(1)=0; % first element
itg(2)=(5*f(1)+8*f(2)-f(3))*dx/12; % Parabolic approx to second
itg(3:N)=(f(1:N-2)+4*f(2:N-1)+f(3:N))*dx/3; % Simpsons rule for 2-segment
% intervals
itg(1:2:N)=cumsum(itg(1:2:N)); % Sum up 2-seg integrals
itg(2:2:N)=cumsum(itg(2:2:N));
if (nargin>2), % ... apply smoothing
itg(2:N-1)=(itg(1:N-2)+2*itg(2:N-1)+itg(3:N))/4;
itg(N)= (itg(N-1)+itg(N))/2;
end;
else
itg=zeros(size(f));
itg(1,:)=zeros(1,M);
itg(2,:)=(5*f(1,:)+8*f(2,:)-f(3,:))*dx/12;
itg(3:N,:)=(f(1:N-2,:)+4*f(2:N-1,:)+f(3:N,:))*dx/3;
itg(1:2:N,:)=cumsum(itg(1:2:N,:)); % Sum up 2-seg integrals
itg(2:2:N,:)=cumsum(itg(2:2:N,:));
if (nargin>2), % ... apply smoothing
itg(2:N-1,:)=(itg(1:N-2,:)+2*itg(2:N-1,:)+itg(3:N,:))/4;
itg(N,:)= (itg(N-1,:)+itg(N,:))/2;
end;
end;
Example :
t=0:0.1:10;
y=sin(t);
z=integral(y,0.1);
figure; plot(t,y,t,z);
0 commentaires
Antonio
le 14 Mai 2014
Modifié(e) : Antonio
le 14 Mai 2014
2 commentaires
Youssef Khmou
le 14 Mai 2014
the sampling rate is :
DX=dx(300)-dx(299);
FF=integral(F,DX);
figure; plot(dx,F,dx,FF),legend(' F','\int F');
Voir également
Catégories
En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!