How do I combine my function's output matrices into a single matrix?

5 vues (au cours des 30 derniers jours)
jrz
jrz le 12 Sep 2021
Commenté : jrz le 12 Sep 2021
function [] = integrateQuaternions(BR,EA)
% Parameters
A = 0; % Initial Conditions (angles halved and in rad)
B = 0;
C = -45 * (pi/180);
p = 0 * (pi/180); % Body rates in radians (0)
q = 5.5 * (pi/180); % (5.N8 deg/s)
r = 3.5 *(pi/180); % ((1+0.5*N9) deg/s)
BR = [p q r];
EA = [0 0 (-45*(pi/180))];
for i = 1:0.1:30 % for 30 second period with 0.1s timestep
% Initial Attitude
q0 = i.*(cosd(C)*cosd(B)*cosd(A) + sind(C)*sind(B)*sind(A));
q1 = i.*(cosd(C)*cosd(B)*sind(A) - sind(C)*sind(B)*cosd(A));
q2 = i.*(cosd(C)*sind(B)*cosd(A) + sind(C)*cosd(B)*sind(A));
q3 = i.*(-cosd(C)*sind(B)*sind(A) + sind(C)*cosd(B)*cosd(A));
Q = [q0 q1 q2 q3];
%Euler Interation
q0dot = i.*(-0.5*((q1*p)+(q2*q)+(q3*r)));
q1dot = i.*(0.5*((q0*p)-(q3*q)+(q2*r)));
q2dot = i.*(0.5*((q3*p)+(q0*q)-(q1*r)));
q3dot = i.*(-0.5*((q2*p)-(q1*q)-(q0*r)));
% Normalizing
Qdot = [q0dot q1dot q2dot q3dot];
mu = sqrt(q0^2 + q1^2 + q2^2 + q3^2);
qnplus1 = Q + Qdot;
Qx = (qnplus1./mu);
Qfinal = [Qx]
end
end
My function is working correctly as it gives the matrices I want, although I'd like to combine them into a single output matrix but am not sure how to. Any advice would be greatly appreciated!

Réponse acceptée

Dave B
Dave B le 12 Sep 2021
Modifié(e) : Dave B le 12 Sep 2021
Your function loops over some values and for each one computes a row vector.
To store the row vector in a matrix, specify an integer row. I've also adjusted your function to return the value:
q = integrateQuaternions;
size(q)
ans = 1×2
291 4
function Qfinal = integrateQuaternions(BR,EA)
% Parameters
A = 0; % Initial Conditions (angles halved and in rad)
B = 0;
C = -45 * (pi/180);
p = 0 * (pi/180); % Body rates in radians (0)
q = 5.5 * (pi/180); % (5.N8 deg/s)
r = 3.5 *(pi/180); % ((1+0.5*N9) deg/s)
BR = [p q r];
EA = [0 0 (-45*(pi/180))];
QFinal = nan(length(1:.1:30),4);
row = 1;
for i = 1:0.1:30 % for 30 second period with 0.1s timestep
% Initial Attitude
q0 = i.*(cosd(C)*cosd(B)*cosd(A) + sind(C)*sind(B)*sind(A));
q1 = i.*(cosd(C)*cosd(B)*sind(A) - sind(C)*sind(B)*cosd(A));
q2 = i.*(cosd(C)*sind(B)*cosd(A) + sind(C)*cosd(B)*sind(A));
q3 = i.*(-cosd(C)*sind(B)*sind(A) + sind(C)*cosd(B)*cosd(A));
Q = [q0 q1 q2 q3];
%Euler Interation
q0dot = i.*(-0.5*((q1*p)+(q2*q)+(q3*r)));
q1dot = i.*(0.5*((q0*p)-(q3*q)+(q2*r)));
q2dot = i.*(0.5*((q3*p)+(q0*q)-(q1*r)));
q3dot = i.*(-0.5*((q2*p)-(q1*q)-(q0*r)));
% Normalizing
Qdot = [q0dot q1dot q2dot q3dot];
mu = sqrt(q0^2 + q1^2 + q2^2 + q3^2);
qnplus1 = Q + Qdot;
Qx = (qnplus1./mu);
Qfinal(row,:) = Qx;
row = row + 1;
end
end
Note that a more common MATLAB approach looks more like
% timesteps = 1:.1:30;
% for i = 1:length(timesteps)
% t = timesteps(i);
% q0 = t .* ...
% ...
% Qfinal(i,:) = ...
% end

Plus de réponses (1)

Walter Roberson
Walter Roberson le 12 Sep 2021
function Qfinal = integrateQuaternions(BR,EA)
% Parameters
A = 0; % Initial Conditions (angles halved and in rad)
B = 0;
C = -45 * (pi/180);
p = 0 * (pi/180); % Body rates in radians (0)
q = 5.5 * (pi/180); % (5.N8 deg/s)
r = 3.5 *(pi/180); % ((1+0.5*N9) deg/s)
BR = [p q r];
EA = [0 0 (-45*(pi/180))];
ivals = 1:0.1:30; % for 30 second period with 0.1s timestep
num_i = length(ivals);
Qfinal = zeros(1, num_i);
for iidx = 1 : num_i % for 30 second period with 0.1s timestep
i = ivals(iidx);
% Initial Attitude
q0 = i.*(cosd(C)*cosd(B)*cosd(A) + sind(C)*sind(B)*sind(A));
q1 = i.*(cosd(C)*cosd(B)*sind(A) - sind(C)*sind(B)*cosd(A));
q2 = i.*(cosd(C)*sind(B)*cosd(A) + sind(C)*cosd(B)*sind(A));
q3 = i.*(-cosd(C)*sind(B)*sind(A) + sind(C)*cosd(B)*cosd(A));
Q = [q0 q1 q2 q3];
%Euler Interation
q0dot = i.*(-0.5*((q1*p)+(q2*q)+(q3*r)));
q1dot = i.*(0.5*((q0*p)-(q3*q)+(q2*r)));
q2dot = i.*(0.5*((q3*p)+(q0*q)-(q1*r)));
q3dot = i.*(-0.5*((q2*p)-(q1*q)-(q0*r)));
% Normalizing
Qdot = [q0dot q1dot q2dot q3dot];
mu = sqrt(q0^2 + q1^2 + q2^2 + q3^2);
qnplus1 = Q + Qdot;
Qx = (qnplus1./mu);
Qfinal(iidx) = [Qx];
end
end

Catégories

En savoir plus sur General Applications dans Help Center et File Exchange

Produits


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by