Several draws from multivariate normal distribution
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
MRC
le 11 Août 2014
Modifié(e) : John D'Errico
le 11 Août 2014
Let
MU=[1 2; 3 4; 5 6]
SIGMA=[2 0; 0 2]
I want to write one or two lines of code to draw R=10 unobservables from Normal((MU(1,:),SIGMA), Normal((MU(2,:),SIGMA), Normal((MU(3,:),SIGMA) without looping and store the results in a matrix 3x(R*2).
0 commentaires
Réponse acceptée
Christopher Berry
le 11 Août 2014
Cris,
Since your sigma matrix is diagonal, there is no need to use a multivariate distribution - your variables are completely independent - so what you are asking for is the same as selecting 10 samples each from 6 independent single variable normal distributions.
If this is truly the case, you can then create 3x20 matrices of mu and sigma and call normrnd like this:
mu = [repmat([1;3;5],[1,10]) repmat([2;4;6],[1,10])];
sigma = 2*ones(3,20);
normrnd(mu,sigma,3,20);
This will give you your 3x20 matrix, but will only work with diagonal co-variance matrices sigma.
0 commentaires
Plus de réponses (1)
Christopher Berry
le 11 Août 2014
The function you are looking for is mvnrnd. You will still have to call mvrnd one distribution at a time, and hence looping would probably make the most sense, especially for more than 3 distributions.
mu = [1 2;3 4;5 6];
SIGMA = [2 0;0 2];
rng('default'); % For reproducibility
r1 = mvnrnd(mu(1,:),SIGMA,10);
r2 = mvnrnd(mu(2,:),SIGMA,10);
r3 = mvnrnd(mu(3,:),SIGMA,10)
R = [r1(:)';r2(:)';r3(:)']
The final output R will be 3x20 and have var1 values in columns 1:10 and var2 values in 11:20.
2 commentaires
John D'Errico
le 11 Août 2014
Modifié(e) : John D'Errico
le 11 Août 2014
No, you don't need to call mvnrnd multiple times. Once will suffice. Simply supply a diagonal covariance matrix and a vector of means.
As easily, this is trivial to do using just randn.
Voir également
Catégories
En savoir plus sur Creating and Concatenating Matrices dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!