# Plot 3D figure

5 vues (au cours des 30 derniers jours)
Tina Hsiao le 11 Nov 2021
Commenté : Walter Roberson le 12 Nov 2021
Hello, I would like to plot this fugure (ro, Z, I), my code as below, could you please give me a help? Thanks a lot.
clear all; close all; clc
for n = 1:1:100
i = sqrt(-1);
a = 0.62;
NA = 0.29;
wL = 772e-3; % micro meter
R = linspace (-0.4,0.4,100);
ro = ((2*pi)/wL)*NA.*R;
Z = linspace(-1,1,100);
mu = ((2*pi)/wL)*NA^2*Z;
fun1 = @(r)r.*exp(-r.^2).* besselj(ro(n),r) .*exp(-(1.*i.*mu(n).*r.^2)./2);
q1 = integral(fun1,0,1);
q2 = integral(fun1,0,a);
E(n) = (2/(1-exp(-1)))*q1- 2*(2/(1-exp(-1)))*q2; % electric field
I(n) = abs(E(n)).^2; % intensity
end
figure(2)
plot(R, I)
##### 0 commentairesAfficher -2 commentaires plus anciensMasquer -2 commentaires plus anciens

Connectez-vous pour commenter.

### Réponse acceptée

Walter Roberson le 11 Nov 2021
The scale factor between and Z or R values is not obvious. It is also not obvious why you used the ranges you did: the sample plot suggests that they should be reversed. However, I had to use those ranges to get any plot of note -- and you can see it is not the expected plot. The output was essentially unchanged with Z -- which suggests that possibly Z is the wrong scale.
a = 0.62;
NA = 0.29;
wL = 772e-3; % micro meter
num_R = 100;
num_Z = 101;
Zvals = linspace(-5,5,num_Z)/1e2;
Rvals = linspace(-40,40,num_R)/1e2;
for Ridx = 1 : num_R
R = Rvals(Ridx);
ro = ((2*pi)/wL)*NA.*R;
for Zidx = 1 : num_Z
Z = Zvals(Zidx);
mu = ((2*pi)/wL)*NA^2*Z;
fun1 = @(r)r .* exp(-r.^2) .* besselj(ro,r) .* exp(-(1.*i.*mu.*r.^2)./2);
q1 = integral(fun1,0,1);
q2 = integral(fun1,0,a);
E(Ridx, Zidx) = (2/(1-exp(-1)))*q1 - 2*(2/(1-exp(-1)))*q2; % electric field
end
end
I = abs(E).^2; % intensity
figure(2)
surf(Zvals, Rvals, I, 'edgecolor', 'none')
##### 2 commentairesAfficher AucuneMasquer Aucune
Tina Hsiao le 12 Nov 2021
Thanks a lot. It works.
clear all; close all; clc
NA = 0.29;
wL = 772e-3; % micro meter
num_Z = 100;
num_R = 100;
Zvals= linspace(-40,40,num_Z);
Rvals = linspace(-5,5,num_R);
for Zidx = 1 : num_Z
Z = (Zvals(Zidx));
mu = ((2*pi)/wL).*NA^2.*Z;
for Ridx = 1 : num_R
R = (Rvals(Ridx));
ro = ((2*pi)/wL)*NA.*R;
fun1 = @(r)r.* exp(-r.^2) .* besselj(0,ro*r).* exp(-(1.*i.*mu.*r.^2)./2);
fun2 = @(a)a.* exp(-a.^2) .* besselj(0,ro*a).* exp(-(1.*i.*mu.*a.^2)./2);
q1 = integral(fun1,0,1);
q2 = integral(fun2,0,0.62);
E(Ridx, Zidx) = (2/(1-exp(-1))).*q1 - 2*(2/(1-exp(-1))).*q2; % electric field
end
end
phase = atan2(imag(E),real(E));
I = abs(E).^2; % intensity
figure(2)
surf( Rvals, Zvals, I/max(max(I)), 'edgecolor', 'none')
Walter Roberson le 12 Nov 2021
Looks good, but what do you do with phase after you calculate it?

Connectez-vous pour commenter.

### Catégories

En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange

R2017a

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by