Doing something simply dumb :(( Trying to get a meshgrid to read my third Class category but not working.

2 vues (au cours des 30 derniers jours)
So Im using machine learning to read my training and testing data where X1 is my first feature, X2 is my second feature, and y is the category it belongs to. This is really simple but im having trouble with it.
Im saying in my code that one category is green (this is where y = 1), another category is blue (where y=2), and the last category is red (y=3). I can plot green and blue but not red data points over my mesh grid and i think this line of code is the problem:
%%%%%%% this is an examply of my y: %%%%%
% y = [ones(60,1); 2*ones(60,1); 3*ones(60,1)];
Y = data.y;
Y = ismember(training_data.y,Y);
scatter(training_data.X1(Y==1),training_data.X2(Y==1),'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'green');
Y = ismember(training_data.y,Y);
scatter(training_data.X1(Y==2),training_data.X2(Y==2) , 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'red');
Y = ismember(training_data.y,Y);
scatter(training_data.X1(Y==3),training_data.X2(Y==3) , 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'red');
xlabel('X1');
This is the code for only 2 categories, and this runs with no issues.
labels = data.y;
Y = ismember(training_data.y,labels(1));
scatter(training_data.X1(Y),training_data.X2(Y), 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'green');
scatter(training_data.X1(~Y),training_data.X2(~Y) , 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'red');
Here is the full code:
%Read in the data and structure a table and rename the variables for
%simplicity
data = table([x(:,1)], [x(:,2)], [y]);
data.Properties.VariableNames = {'X1','X2','y'};%Read in the data and structure a table and rename the variables for
classifier_name = {'Naive Bayes','Decision Tree','Discriminant Analysis','Nearest Neighbor'};
classifier{1} = fitcnb(data,'y~X1+X2');
%SVM has trouble with more than 1 class
% classifier{2} = fitcsvm(x,y,'KernelFunction','polynomial','PolynomialOrder',6);
classifier{2} = fitctree(data,'y~X1+X2');
classifier{3} = fitcdiscr(data,'y~X1+X2');
% classifier{4} = fitcknn(x,y);
k = 5;
classifier{4} = fitcknn(data,'y~X1+X2','NumNeighbors',k,'Distance','euclidean');
% %%%%%%%%%%%%%%%%%%%%%% Loop through each Machine learning classifier,
% then specify accuracy
for i = 1:numel(classifier)
cv = cvpartition(classifier{i}.NumObservations,'HoldOut',0.2); %split into 20% testing and 80% training
cross_validated_model = crossval(classifier{i},'cvpartition',cv);
%Create Predictions for training and test sets
Predictions_test = predict(cross_validated_model.Trained{1},data(test(cv),1:end-1));
Predictions_train = predict(cross_validated_model.Trained{1},data(training(cv),1:end-1));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Create Predictions %%%%
Predict = predict(cross_validated_model.Trained{1},data(test(cv),1:end-1));
%%%% Draw Confusion Matrix %%%% this sets up an accuracy based matrix
Result = confusionmat(cross_validated_model.Y(test(cv)),Predict);
%%% Accuracy %%%% calulates the accuracy based on the confusion matrix
display(classifier_name{i})
Testing_accuracy = ((Result(2,2)+Result(1,1))/((Result(2,2)+Result(1,1)+Result(1,2)+Result(2,1))))
%%%% Create Predictions %%%%
Predict = predict(cross_validated_model.Trained{1},data(training(cv),1:end-1));
%%%% Draw Confusion Matrix %%%% this sets up an accuracy based matrix
Result = confusionmat(cross_validated_model.Y(training(cv)),Predict);
%%% Accuracy %%%% calulates the accuracy based on the confusion matrix
display(classifier_name{i})
Training_accuracy = ((Result(2,2)+Result(1,1))/((Result(2,2)+Result(1,1)+Result(1,2)+Result(2,1))))
labels = data.y;
X1_range = min(data.X1(training(cv)))-1:1000:max(data.X1(training(cv)))+1;
X2_range = min(data.X2(training(cv)))-1:1000:max(data.X2(training(cv)))+1;
[xx1, xx2] = meshgrid(X1_range,X2_range);
XGrid = [xx1(:) xx2(:)];
predictions_meshgrid = predict(cross_validated_model.Trained{1},XGrid);
%figure
subplot(2,2,i);
gscatter(xx1(:), xx2(:), predictions_meshgrid,'gbr');
hold on
training_data = data(training(cv),:);
Y = data.y;
Y = ismember(training_data.y,labels(1));
scatter(training_data.X1(Y),training_data.X2(Y),'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'green');
Y = ismember(training_data.y,labels(2));
scatter(training_data.X1(~Y),training_data.X2(~Y) , 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'blue');
Y = ismember(training_data.y,labels(3));
scatter(training_data.X1(Y==3),training_data.X2(Y==3) , 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'red');
xlabel('X1');
ylabel('X2');
title(classifier_name);
legend off, axis tight
% legend(labels,'Location',[0.45,0.01,0.45,0.05],'Orientation','Horizontal');
hold off
% subplot(2,2,i);
% gscatter(xx1(:), xx2(:), predictedhealth,'gbr','osd');
title(classifier_name{i})
legend off, axis tight
end
Pretty Please help!

Réponses (1)

yanqi liu
yanqi liu le 30 Déc 2021
yes,sir,may be use
index1 = find(Y==1);
index2 = find(Y==2);
index3 = find(Y==3);
to generate data index vector,and get data split to plot

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by