loss returns very low values in feature forward selection
    7 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
    Esmeralda Ruiz Pujadas
 le 21 Jan 2022
  
    
    
    
    
    Commenté : Esmeralda Ruiz Pujadas
 le 4 Fév 2022
            Dear all,
I wonder because loss returns very low values different to classification error in Feature forward selection. For example:
             classifierfun = @(train_data,train_labels,test_data,test_labels) ...
                        loss(fitcsvm(train_data,train_labels,'KernelFunction', 
                'gaussian','KernelScale','auto','Standardize',true),test_data,test_labels,'LossFun', 'ClassifError');
        [fs,history] = sequentialfs(classifierfun,table2array(TableFeaturesNormalized),Y,'
         cv',c,'nfeatures',min(size(TableFeaturesNormalized,2),max_its_fs),'options',opts)
I get 
Step 1, added column 178, criterion value 0.00996737
Step 2, added column 245, criterion value 0.00997051
The same in here
                    opts = statset(‘display’,’iter’);
                    costfun = @(XT,yT,Xt,yt)loss(fitcecoc(XT,yT),Xt,yt);
            [fs, history] = sequentialfs(costfun, X_train, 
                    y_train, ‘cv’, cv, ‘options’, opts); 
why is this criterion value so low if it is a classification error?
However, if I do
       classifierfun = @(train_data,train_labels,test_data,test_labels) ...
           sum(predict(fitcsvm(train_data,train_labels,'KernelFunction', 'gaussian','Standardize',true), 
        test_data) ~= test_labels); 
The values make sense
Step 1, added column 178, criterion value 0.36233363
Step 2, added column 245, criterion value 0.35302325
          Thank you for the help
0 commentaires
Réponse acceptée
  Kumar Pallav
    
 le 1 Fév 2022
        Hi,
As per my understanding, sequentialfs sums the values returned by 'classifierfun' and divides that sum by the total number of test observations. This is the reason you are getting low values of criterion. You may refer  this for details on sequentialfs.
Hope it helps!
Plus de réponses (0)
Voir également
Catégories
				En savoir plus sur Classification Trees dans Help Center et File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!