The pooled covariance matrix of TRAINING must be positive definite.

11 vues (au cours des 30 derniers jours)
sun rise
sun rise le 21 Jan 2022
Commenté : sun rise le 29 Jan 2022
clc
clear all
load featurs_T
load featurs_S
load Group_Train
load Group_Test
cv_x=cov(Feat1);
[V,D] = eig(cv_x);
d=diag(D);
d=d(end:-1:1);
sm_d=cumsum(d) /sum(d);
idx=find(sm_d>0.99);
T=[V(:,end:-1:idx(1))]';
new_feat1=T*Feat1';
%TrainingSet= new_feat1';
new_feat2=T*Feat2';
%TestSet= new_feat2';
TrainingSet = new_feat1';
TestSet = new_feat2';
Group_Train1 = Group_Train1';
Group_Test1 = Group_Test1';
%------------------------
% result1= multisvm(TrainingSet,Group_Train1,TestSet,Group_Test1);
result1= classify(TestSet,TrainingSet,Group_Train1,'linear');
testresult = result1;
Accuracy = mean(Group_Test1==result) * 100;
fprintf('Accuracy = %.2f\n', Accuracy);
fprintf('error rate = %.2f\n ', mean(result ~= Group_Test1 ) * 100);
Error using classify (line 233)
The pooled covariance matrix of TRAINING must be positive definite.
Error in HOG2 (line 31)
result1= classify(TestSet,TrainingSet,Group_Train1,'linear');
  5 commentaires
sun rise
sun rise le 24 Jan 2022
I actually used pca to reduce dimensions. But the error is still there
sun rise
sun rise le 29 Jan 2022
Feat1 = pca(Feat1);
Feat2 = pca (Feat2);
But why is pca decreasing the number of images and thus I get this error
The length of GROUP must equal the number of rows in TRAINING.
This is evident in the workspace

Connectez-vous pour commenter.

Réponse acceptée

Matt J
Matt J le 23 Jan 2022
I suggest you calculate the pooled covariance matrix and verify whether the error message is accurate.

Plus de réponses (0)

Catégories

En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange

Produits


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by