Plot a for-loop with if-statements inside
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have written three different functions for three different intervals on the variable r. I wrote the following code:
a = 1;
b = 2;
pv = 5*10^(-3);
Q = pv*((4*pi*b^3)/3) - pv*((4*pi*a^3)/3);
epsilon = 8.8541878176*10^(-12);
r = 0:0.01:10
hold on
for r = 0:0.01:10
if r<a
E = -(Q/(4*pi*epsilon*r^2));
elseif r>b
E = (Q/(4*pi*epsilon*r^2));
else a<r<b
E = (pv*r)/(3*epsilon) - (pv*a^3)/(3*r^2*epsilon);
end
plot(E,r,'r');
end
hold off
Now, this code does not yield a visable plot, it's just empy. I figured maybe I need to store E of every iteration of the loop in a matrix, but have found no way of solving it.
0 commentaires
Réponse acceptée
Dave B
le 7 Fév 2022
You're not seeing anything because you're plotting 1001 lines, each of which has only one point. You can fix this by plotting them as markers, or by saving all the points to a vector and using one call to plot (vastly preferred approach). Additionally, the condition in your else statement doesn't do anything, and you have an assignment to the variable r which doesn't do anything, I've removed both below:
1001 line objects containing a marker (heavyweight solution):
a = 1;
b = 2;
pv = 5*10^(-3);
Q = pv*((4*pi*b^3)/3) - pv*((4*pi*a^3)/3);
epsilon = 8.8541878176*10^(-12);
hold on
for r = 0:0.01:10
if r<a
E = -(Q/(4*pi*epsilon*r^2));
elseif r>b
E = (Q/(4*pi*epsilon*r^2));
else %a<r<b
E = (pv*r)/(3*epsilon) - (pv*a^3)/(3*r^2*epsilon);
end
plot(E,r,'r.');
end
hold off
1 line object (lightweight solution):
clf
a = 1;
b = 2;
pv = 5*10^(-3);
Q = pv*((4*pi*b^3)/3) - pv*((4*pi*a^3)/3);
epsilon = 8.8541878176*10^(-12);
rr = 0:0.01:10;
E = nan(length(rr),1);
for i = 1:numel(rr)
r=rr(i);
if r<a
E(i) = -(Q/(4*pi*epsilon*r^2));
elseif r>b
E(i) = (Q/(4*pi*epsilon*r^2));
else %a<r<b
E(i) = (pv*r)/(3*epsilon) - (pv*a^3)/(3*r^2*epsilon);
end
end
plot(E,rr,'r');
0 commentaires
Plus de réponses (1)
Rik
le 7 Fév 2022
In this case you don't even need a loop:
a = 1;
b = 2;
pv = 5*10^(-3);
Q = pv*((4*pi*b^3)/3) - pv*((4*pi*a^3)/3);
epsilon = 8.8541878176*10^(-12);
r = 0:0.01:10;
E=NaN(size(r));
L1=r<a;
E(L1)=-(Q./(4*pi*epsilon*r(L1).^2));
L2=r>b;
E(L2)= (Q./(4*pi*epsilon*r(L2).^2));
L3=~(L1&L2);
E(L3)=(pv*r(L3))/(3*epsilon) - (pv*a^3)./(3*r(L3).^2*epsilon);
plot(E,r,'r');xlim([-20e11 2e11])
0 commentaires
Voir également
Catégories
En savoir plus sur Mathematics and Optimization dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!