creating a string multiple string filter on multiple columns
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello, I have a n x m (row-column data) that I previously was able to do some basic analysis on.
How can I create a multiple "string filter" for each column and remove the unwanted "strings" , after filtering I then need to concatenate the column after removing the unwanted strings.
data = randn(n,m);
results = cell(1,m);
for jj = 1:m
results{jj} = perform_analysis(data(:,jj));
end
Example:
First Filter is AA, BB, CC, DD (independent of each other) then concatenate "some data" on the column x.
Continue this type of filter until all columns have removed the unwanted strings while the data is concatenated for all columns.
Thanks...
3 commentaires
Jan
le 7 Fév 2022
I do not understand, what you are asking for. What does this mean: concatenate "some data" on the column x ?
What is the shown table? A string array? Then setdiff should work.
Réponse acceptée
dpb
le 7 Fév 2022
Without knowing the real application and how the data are obtained so it is presumed to already be character type,
>> n=16;m=2;data =cellstr(char(randi([65 70],n,m)))
data =
16×1 cell array
{'FC'}
{'FE'}
{'DD'}
{'AD'}
{'AF'}
{'BB'}
{'FE'}
{'BE'}
{'EC'}
{'BD'}
{'FA'}
{'CA'}
{'BD'}
{'BE'}
{'DF'}
{'CA'}
>> result=data(~matches(data,{'AA','BB','CC','DD'}))
result =
14×1 cell array
{'FC'}
{'FE'}
{'AD'}
{'AF'}
{'FE'}
{'BE'}
{'EC'}
{'BD'}
{'FA'}
{'CA'}
{'BD'}
{'BE'}
{'DF'}
{'CA'}
>>
Since you pasted an image instead of data, the starting array is the same; pasting in the actual example data is much better for responders and more likely to get solution to particular problem if it is more highly data-dependent than this particular one.
If OTOH, the data are really generated as numeric and then combined as above, then one can get their directly from the numerics...
>> result=cellstr(char(data(data(:,1)~=data(:,2),:)))
result =
14×1 cell array
{'FC'}
{'FE'}
{'AD'}
{'AF'}
{'FE'}
{'BE'}
{'EC'}
{'BD'}
{'FA'}
{'CA'}
{'BD'}
{'BE'}
{'DF'}
{'CA'}
>>
3 commentaires
DGM
le 9 Fév 2022
How would you reshape this array into 2D after removing the matches?
A = {'AA' 'AB' 'AC'; 'BB' 'BA' 'BC'; 'CA' 'CB' 'CC'}
Arrays must be rectangular, so what is an acceptable workaround? Padding the columns with empty cells?
Plus de réponses (1)
DGM
le 7 Fév 2022
Assuming you're dealing with a cell array of chars or string arrays:
A = {'AA'; 'AB'; 'BA'; 'BB'; 'AC'; 'CA'; 'BC'; 'CB'; 'CC'};
toremove = {'AA','BB','CC'};
% you could do it with ismember()
B = A(~ismember(A,toremove))
% or you could use setdiff()
C = setdiff(A,toremove,'stable')
2 commentaires
DGM
le 9 Fév 2022
Modifié(e) : DGM
le 9 Fév 2022
It should work fine on 2D arrays, but you have to realize that the result will necessarily not be 2D anymore.
A = {'AA'; 'AB'; 'BA'; 'BB'; 'AC'; 'CA'; 'BC'; 'CB'; 'CC'};
A = [A A(randperm(numel(A))) A(randperm(numel(A)))]; %replicate to 3 columns
toremove = {'AA','BB','CC'};
% you could do it with ismember()
B = A(~ismember(A,toremove))
% or you could use setdiff()
C = setdiff(A,toremove,'stable')
Note that setdiff() returns only the unique values, whereas using ismember() returns everything. Since A in this case is three randomly permuted copies of the same column, the result from B is three times that of C, as it contains three copies of each matching element.
If you are getting errors, you'll have to describe exactly what you're doing and what error you're getting.
EDIT:
Regarding columnwise filtering and padding:
A = {'AA'; 'AB'; 'BA'; 'BB'; 'AC'; 'CA'; 'BC'; 'CB'; 'CC'};
A = repmat(A,[1 3]);
A(:) = A(randperm(numel(A))) % 3x3 but matches aren't uniformly distributed
toremove = {'AA','BB','CC'};
B = cell(size(A));
maxr = 0;
for c = 1:size(A,2)
thisb = A(~ismember(A(:,c),toremove),c);
B(1:numel(thisb),c) = thisb;
maxr = max(maxr,numel(thisb));
end
B = B(1:maxr,:)
Alternatively, you could put each column in a nested cell array:
B = cell([1 size(A,2)]);
maxr = 0;
for c = 1:size(A,2)
B{c} = A(~ismember(A(:,c),toremove),c);
end
B
Again, similar can be done with setdiff() if you only want the unique results.
Voir également
Catégories
En savoir plus sur Data Type Identification dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!