Invalid training data. For classification tasks, responses must be a vector of categorical responses. For regression tasks, responses must be a vector, a matrix, or a 4-D arra

7 vues (au cours des 30 derniers jours)
clc; clear all; close all;
load Projectdata.mat
% Split Data Glucose
GlucoseReadings_T = GlucoseReadings';
GlucoseReadings_train = GlucoseReadings_T;
train_GlucoseReadings = GlucoseReadings_train(1:84,:);
train_GR_output = GR_output(1:17);
%Split Data Insulin
InsulinReadings_T = InsulinReadings';
InsulinReadings_train = InsulinReadings_T;
train_InsulinReadings = InsulinReadings_train(1:84,:);
train_INS_output = INS_output(1:17);
% Data Batch Glucose
GlucoseReadingsTrain=(reshape(train_GlucoseReadings', [1749,84]));
val_GlucoseReadings = GlucoseReadings_train(85:102,:);
val_GR_output = GR_output(85:102);
GlucoseReadingsVal=(reshape(val_GlucoseReadings', [1749,18]));
test_GlucoseReadings =GlucoseReadings_train(103:120,:);
test_GR_output = GR_output(103:120);
GlucoseReadingsTest=(reshape(test_GlucoseReadings', [1749,18]));
numFeatures = size(GlucoseReadings_T,2);
%Data Batch Insulin
InsulinReadingsTrain=(reshape(train_InsulinReadings', [1758,84]));
val_InsulinReadings = InsulinReadings_train(85:102,:);
val_INS_output = INS_output(85:102);
InsulinReadingsVal=(reshape(val_InsulinReadings', [1758,18]));
test_InsulinReadings = InsulinReadings_train(103:120,:);
test_INS_output = INS_output(103:120);
InsulinReadingsTest=(reshape(test_InsulinReadings', [1758,18]));
numFeatures1 = size(InsulinReadings_T,2);
% number of hidden units represent the size of the data
numHiddenUnits = 120;
%number of classes represent different patients normal,LIS,type2....
numClasses = length(categories(categorical(GR_output)));
numClasses1 = length(categories(categorical(INS_output)));
layers = [ ...
sequenceInputLayer(numFeatures)
%dropoutLayer(0.5)
instanceNormalizationLayer
bilstmLayer(round(numHiddenUnits/2),'OutputMode','sequence')
fullyConnectedLayer(numClasses)
instanceNormalizationLayer
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'GradientThreshold',1, ...
'Verbose',false, ...
'ValidationData',{GlucoseReadingsVal, val_GR_output},...
'ValidationData',{InsulinReadingsVal, val_INS_output},...
'LearnRateDropFactor',0.2,...
'LearnRateDropPeriod',5,...
'Plots','training-progress');
% Train
whos
Name Size Bytes Class Attributes GR_output 1x120 7296 string GlucoseReadings 1749x120 1679040 double GlucoseReadingsTest 1749x18 251856 double GlucoseReadingsTrain 1749x84 1175328 double GlucoseReadingsVal 1749x18 251856 double GlucoseReadings_T 120x1749 1679040 double GlucoseReadings_train 120x1749 1679040 double INS_output 1x120 7296 string InsulinReadings 1758x120 1687680 double InsulinReadingsTest 1758x18 253152 double InsulinReadingsTrain 1758x84 1181376 double InsulinReadingsVal 1758x18 253152 double InsulinReadings_T 120x1758 1687680 double InsulinReadings_train 120x1758 1687680 double layers 7x1 3332 nnet.cnn.layer.Layer numClasses 1x1 8 double numClasses1 1x1 8 double numFeatures 1x1 8 double numFeatures1 1x1 8 double numHiddenUnits 1x1 8 double options 1x1 254865 nnet.cnn.TrainingOptionsADAM test_GR_output 1x18 1248 string test_GlucoseReadings 18x1749 251856 double test_INS_output 1x18 1248 string test_InsulinReadings 18x1758 253152 double train_GR_output 1x17 1048 string train_GlucoseReadings 84x1749 1175328 double train_INS_output 1x17 1048 string train_InsulinReadings 84x1758 1181376 double val_GR_output 1x18 1248 string val_GlucoseReadings 18x1749 251856 double val_INS_output 1x18 1248 string val_InsulinReadings 18x1758 253152 double
net = trainNetwork(GlucoseReadingsTrain,train_GR_output,layers,options);
Error using trainNetwork (line 184)
Invalid training data. For classification tasks, responses must be a vector of categorical responses. For regression tasks, responses must be a vector, a matrix, or a 4-D array of numeric responses which must not contain NaNs.
net1 = trainNetwork(InsulinReadingsTrain,train_INS_output,layers,options);
% Test
miniBatchSize = 27;
GR_outputPred = classify(net,GlucoseReadingsTest,...
'MiniBatchSize',miniBatchSize,...
'Environment','cpu');
acc = mean(GR_outputPred(:) == categorical(test_GR_output(:)))
acc1 = mean(INS_outputPred(:) == categorical(test_INS_output(:)))
figure
t = confusionchart(categorical(test_GR_output(:)),GR_outputPred(:));
figure
t1 = confusionchart(categorical(test_INS_output(:)),INS_outputPred(:));
  2 commentaires
KSSV
KSSV le 4 Mar 2022
Please note that, you have to close/ acknowledge the already posted question and go for other question.

Connectez-vous pour commenter.

Réponse acceptée

Walter Roberson
Walter Roberson le 4 Mar 2022
net = trainNetwork(GlucoseReadingsTrain, categorical(train_GR_output), layers,options);
  2 commentaires
Nathaniel Porter
Nathaniel Porter le 4 Mar 2022
This however did not work it produced the error seen below:
Invalid training data. Sequence responses must have the same sequence length as the corresponding
predictors.
Walter Roberson
Walter Roberson le 4 Mar 2022
train_GR_output = GR_output(1:17);
That response should only be used with an input of size 17.
You should not be training on data only from one class: you should be training on data from all of your classes.

Connectez-vous pour commenter.

Plus de réponses (1)

yanqi liu
yanqi liu le 7 Mar 2022
clc; clear all; close all;
load Projectdata.mat
% Split Data Glucose
GR_output=categorical(GR_output);
INS_output=categorical(INS_output);
GlucoseReadings_T = GlucoseReadings';
GlucoseReadings_train = GlucoseReadings_T;
train_GlucoseReadings = GlucoseReadings_train(1:84,:);
train_GR_output = GR_output(1:84);
%Split Data Insulin
InsulinReadings_T = InsulinReadings';
InsulinReadings_train = InsulinReadings_T;
train_InsulinReadings = InsulinReadings_train(1:84,:);
train_INS_output = INS_output(1:84);
% Data Batch Glucose
GlucoseReadingsTrain=(reshape(train_GlucoseReadings', [1749,84]));
val_GlucoseReadings = GlucoseReadings_train(85:102,:);
val_GR_output = GR_output(85:102);
GlucoseReadingsVal=(reshape(val_GlucoseReadings', [1749,18]));
test_GlucoseReadings =GlucoseReadings_train(103:120,:);
test_GR_output = GR_output(103:120);
GlucoseReadingsTest=(reshape(test_GlucoseReadings', [1749,18]));
numFeatures = size(GlucoseReadings_T,2);
%Data Batch Insulin
InsulinReadingsTrain=(reshape(train_InsulinReadings', [1758,84]));
val_InsulinReadings = InsulinReadings_train(85:102,:);
val_INS_output = INS_output(85:102);
InsulinReadingsVal=(reshape(val_InsulinReadings', [1758,18]));
test_InsulinReadings = InsulinReadings_train(103:120,:);
test_INS_output = INS_output(103:120);
InsulinReadingsTest=(reshape(test_InsulinReadings', [1758,18]));
numFeatures1 = size(InsulinReadings_T,2);
% number of hidden units represent the size of the data
numHiddenUnits = 120;
%number of classes represent different patients normal,LIS,type2....
numClasses = length(categories(categorical(GR_output)));
numClasses1 = length(categories(categorical(INS_output)));
layers = [ ...
sequenceInputLayer(numFeatures)
dropoutLayer(0.5)
%instanceNormalizationLayer
bilstmLayer(round(numHiddenUnits/2),'OutputMode','sequence')
fullyConnectedLayer(numClasses)
%instanceNormalizationLayer
dropoutLayer(0.5)
softmaxLayer
classificationLayer];
layers1 = [ ...
sequenceInputLayer(numFeatures1)
dropoutLayer(0.5)
%instanceNormalizationLayer
bilstmLayer(round(numHiddenUnits/2),'OutputMode','sequence')
fullyConnectedLayer(numClasses)
%instanceNormalizationLayer
dropoutLayer(0.5)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'GradientThreshold',1, ...
'Verbose',false, ...
'ValidationData',{GlucoseReadingsVal, val_GR_output},...
'LearnRateDropFactor',0.2,...
'LearnRateDropPeriod',5,...
'Plots','training-progress');
options1 = trainingOptions('adam', ...
'MaxEpochs',100, ...
'GradientThreshold',1, ...
'Verbose',false, ...
'ValidationData',{InsulinReadingsVal, val_INS_output},...
'LearnRateDropFactor',0.2,...
'LearnRateDropPeriod',5,...
'Plots','training-progress');
% Train
% whos
net = trainNetwork(GlucoseReadingsTrain,train_GR_output,layers,options);
net1 = trainNetwork(InsulinReadingsTrain,train_INS_output,layers1,options1);
% Test
miniBatchSize = 27;
GR_outputPred = classify(net,GlucoseReadingsTest,...
'MiniBatchSize',miniBatchSize,...
'ExecutionEnvironment','cpu');
acc = mean(GR_outputPred(:) == categorical(test_GR_output(:)))
INS_outputPred = classify(net1,InsulinReadingsTest,...
'MiniBatchSize',miniBatchSize,...
'ExecutionEnvironment','cpu');
acc1 = mean(INS_outputPred(:) == categorical(test_INS_output(:)))
figure
t = confusionchart(categorical(test_GR_output(:)),GR_outputPred(:));
figure
t1 = confusionchart(categorical(test_INS_output(:)),INS_outputPred(:));
  1 commentaire
Nathaniel Porter
Nathaniel Porter le 7 Mar 2022
What layers do you recommned I can use to improve my training in terms of the gap between my validation and training line

Connectez-vous pour commenter.

Catégories

En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange

Produits


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by